Skip to main content
Log in

Processing and microwave dielectric properties of barium magnesium tantalate ceramics for high-quality-factor personal communication service filters

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A modified route, based on calcined MgO, Ta2O5, BaCO3, and ZrO2, was developed and used for preparation of barium magnesium tantalate (BMT) and barium zirconate (BZ)-doped BMT ceramics (BZ-BMT). The dielectric constant for BMT ceramics sintered at 1600 °C for 2 h was 24.9 at 7.28 GHz. The average long-range ordering parameter for undoped BMT ceramics was 0.81 ± 0.03 and the coresponding average quality factor and resonant frequench product (Q d · f o) was 147,000 ± 3800 GHz. A significant level of B-site long-range cation disorder was introduced as a result of BZ doping of BMT ceramics. The average ordering parameters for 3 and 4 mol% BZ-doped BMT were found to be 0.69 ± 0.06 and 0.49 ± 0.13, respectively. The decrease in ordering parameters did not lead to a dramatic decrease in the corresponding average quality factors of 3 mol% BZ-BMT (Q d · f o = 127,000 ±3800 GHz) and 4 mol% BZ-BMT (Q d · f o = 139,000 ± 4200 GHz). The results suggest that the B-site cation ordering is not a primary factor that influences the observed microwave loss in BMT ceramics. The influence of atomic level point defects, induced from raw material impurities, processing, etc., may be more important in controlling the quality factor of BMT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wireless Technologies and the National Information Infrastructure, Office of Technology Assessment, Report No. S/N 052-003-1421-1 OTA-ITC-622, Pittsburgh, PA, (1995).

  2. C. Vittoria, Elements of Microwave Networks (World Scientific, Singapore, 1998).

    Google Scholar 

  3. Y. Konishi, Microwave Electronic Circuit Technology (Marcel Dekker, New York, 1998).

    Google Scholar 

  4. R.W. Rhea, Handbook of Microwave Technology, edited by T.K. Ishii (Academic Press, San Diego, 1995), p. 196.

    Google Scholar 

  5. J.F. Jiang, and W.D. Blair, IEEE Microwave Theory Techniques 46, 2493 (1998).

    Google Scholar 

  6. P.P. Phulé and S.H. Risbud, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 275.

  7. P.P. Phulé and S.H. Risbud, J. Mater. Sci. 25, 169 (1990).

    Google Scholar 

  8. T. Negas, G. Yeager, S. Bell, and N. Coats, Ceram. Soc. Bull. 72(1), 80 (1993).

    CAS  Google Scholar 

  9. G. Wolfram and H.E. Göbel, Mater. Res. Bull. 16, 1455 (1981).

    CAS  Google Scholar 

  10. F. Khairulla and P.P. Phulé, in Proceedings of the International Conference on Ceramic Powder Science, edited by G.L. Messing (1991), pp. 725–732.

    Google Scholar 

  11. P.P. Phule and F. Khairulla, Mater. Sci. Eng. B 12, 327 (1991).

    Google Scholar 

  12. K. Wakino, M. Murata, and H. Tamura, J. Am. Ceram. Soc. 69(1), 34 (1986).

    CAS  Google Scholar 

  13. D.J. Barber, K.M. Moulding, J. Zhou, and M. Li, J. Mater. Sci. 32, 1531 (1997).

    CAS  Google Scholar 

  14. L. Chai, M.A. Akbas, P.K. Davies, and J.B. Parise, Mater. Res. Bull. 32, 1261 (1997).

    CAS  Google Scholar 

  15. X.M. Chen, Y. Suzuki, and N. Sato, J. Mater. Sci. 5, 244 (1994).

    CAS  Google Scholar 

  16. X.M. Chen, and Y.J. Wu, J. Mater. Sci. Mater. Electronics 7, 369 (1996).

    CAS  Google Scholar 

  17. S. Katayama, and M. Sekine, J. Mater. Chem. 2(8), 889 (1992).

    CAS  Google Scholar 

  18. S. Katayama, I. Yoshihaga, N. Yamada, and T. Nagai, J. Am. Ceram. Soc. 79, 2059 (1996).

    CAS  Google Scholar 

  19. E.S. Kim and K.H. Yoon, Ferroelectrics 133, 187 (1992).

    CAS  Google Scholar 

  20. E.S. Kim, and K.H. Yoon, J. Mater. Sci. 29, 830 (1994).

    CAS  Google Scholar 

  21. E.S. Kim and K.H. Yoon, Ferroelectrics 154, 343 (1994).

    Google Scholar 

  22. K. Matsumoto, T. Hiuga, K. Takada and H. Ichimura, in Proceedings of the Sixth IEEE International Symposium on Application of Ferroelectrics (Institute of Electrical and Electronic Engineers, Bethlehem, PA, 1986).

    Google Scholar 

  23. H. Matsumoto, H. Tamura, and K. Wakino, J. Appl. Phys. 30, 2347 (1992).

    Google Scholar 

  24. S. Nomura, K. Toyama, and K. Kaneta, Appl. Phys. 21(10), L624 (1982).

    Google Scholar 

  25. O. Renoult, J.P. Boilot, F. Chaput, R. Papiernik, and L.G. Hubert-Pfalzgraf, J. Am. Ceram. Soc. 75, 3337 (1992).

    CAS  Google Scholar 

  26. D. Ravichandran, R. Meyer, Jr., R. Roy, R. Guo, A.S. Bhalla, and L.E. Cross, Mater. Res. Bull. 31, 817 (1996).

    CAS  Google Scholar 

  27. O. Renoult, J.P. Boilot, F. Chaput, R. Papiernik, G.H. Pfalzgraf, and M. Lejeune, in Ceramics Today–Tomorrow’s Ceramics, edited by P. Vincenzini (Elsevier Science Publishers, London, 1991), pp. 1991–1997.

    Google Scholar 

  28. D.A. Sagala, and S. Koyasu, J. Am. Ceram. Soc. 76, 2433 (1993).

    CAS  Google Scholar 

  29. K.H. Yoon, D.P. Kim, and E.S. Kim, J. Am. Ceram. Soc. 77, 1062 (1994).

    CAS  Google Scholar 

  30. H.J. Youn, H.Y. Kim, and H. Kim, Jpn. J. Appl. Phys. 35, 3947 (1996).

    CAS  Google Scholar 

  31. J. Zhou, Q. Su, K.M. Noulding, and D.J. Barber, J. Mater. Res. 12, 596 (1997).

    CAS  Google Scholar 

  32. J. Zhou, Q-X. Su, K.M. Moulding, and D.J. Barber, J. Mater. Sci. Lett. 15, 1808 (1996).

    CAS  Google Scholar 

  33. M. Schnoeller and W. Wersing, in Processing Science of Advanced Ceramics, edited by I.A. Aksay, G.L. McVay, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA 1989), p. 45.

  34. M. Schnoeller and W. Wersing, Proceedings of the Second European Conference on Sol-Gel Technology, edited by S. Vilminot, R. Nass, and H. Schmidt (Saarbrucken, North-Holland, Germany, 1991) Vol. 5.

    Google Scholar 

  35. S. Kawashima, M. Nishida, I. Ueda, and H. Quchi, J. Am. Ceram. Soc. 66, 421 (1983).

    CAS  Google Scholar 

  36. S.B. Desu and H.M. O’Bryan, J. Am. Ceram. Soc. 68, 546 (1985).

    CAS  Google Scholar 

  37. S. Kawashima, Am. Ceram. Soc. Bull. 72(5), 120 (1993).

    CAS  Google Scholar 

  38. H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, Commun. Am. Ceram. Soc. 67(4), C59 (1984).

    CAS  Google Scholar 

  39. M. Sugiyama, T. Inusuka, and H. Kubo, Ceram. Trans. 15, 153 (1989).

    Google Scholar 

  40. K.H. Yoon, D.P. Kim, and E.S. Kim, Ferroelectrics 154, 337 (1994).

    Google Scholar 

  41. H. Vincent, Ch. Perrier, Ph. l’Heritier, and M. Labeyrie, Mat. Res. Bull. 28, 951 (1993).

    CAS  Google Scholar 

  42. P.K. Davies, in Symposium on Materials and Processes for Wireless Communication (American Ceramic Society, Westerville, OH, 1995).

    Google Scholar 

  43. W.E. Courtney, IEEE Trans. MTT MTT-18(8), 476 (1970).

    Google Scholar 

  44. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (John Wiley & Sons, New York, 1991), p. 58.

    Google Scholar 

  45. W. Wersing, in Electronic Ceramics, edited by D.C.H. Steels (Elsevier, London, 1991), pp. 67–115.

    Google Scholar 

  46. A.E. McHale and R.S. Roth, J. Am. Ceram. Soc. 66, 1320 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ra, SH., Phulé, P.P. Processing and microwave dielectric properties of barium magnesium tantalate ceramics for high-quality-factor personal communication service filters. Journal of Materials Research 14, 4259–4265 (1999). https://doi.org/10.1557/JMR.1999.0577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0577

Navigation