Skip to main content
Log in

Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of lower valent substituents on the stability of the antiferroelectric phase of lead zirconate was studied by dielectric spectroscopy, Sawyer–Tower polarization methods, and electron diffraction techniques. The stability of an intermediate ferroelectric phase region was found to be enhanced with increasing lower valent substitution concentration. The influences of substituents of different ionic size and valence on the stabilization of the intermediate ferroelectric phase were differentiated. In general, lower valent substituents, such as K+ and Fe3+ affected antiferroelectric phase stability more significantly than higher valent ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Shirane, E. Sawaguchi, and Y. Takagi, Phys. Rev. 84, 476 (1951).

    Article  CAS  Google Scholar 

  2. S. Robert, J. Am. Ceram. Soc. 33, 63 (1950).

    Article  Google Scholar 

  3. S. Robert, Phys. Rev. 83, 1078 (1951).

    Article  Google Scholar 

  4. G. Shirane and K. Suzuki, J. Phys. Soc. Jpn. 7, 333 (1952).

    Article  CAS  Google Scholar 

  5. D. Berlincourt, H.H.A. Krueger, and B. Jaffe, J. Phys. Chem. Solids 25, 659 (1964).

    Article  CAS  Google Scholar 

  6. G. Shirane and R. Pepinski, Phys. Rev. 91, 812 (1953).

    Article  CAS  Google Scholar 

  7. D. Viehland, D. Forst, Z. Xu, and J.F. Li, J. Appl. Phys. 75, 4137 (1996).

    Article  Google Scholar 

  8. S-E. Park, M-J. Pan, K. Markowski, S. Yoshikawa, and L.E. Cross, J. Appl. Phys. 82, 1798 (1997).

    Article  CAS  Google Scholar 

  9. A. Kumada, G. Toda, and Y. Otomo, Ferroelectrics 7, 367 (1974).

    Article  CAS  Google Scholar 

  10. K. Furuta and K. Uchino, Adv. Ceram. Mater. 1, 61 (1986).

    CAS  Google Scholar 

  11. Z. Xu, X.H. Dai, and D. Viehland, Phys. Rev. B51, 6261 (1995); Z. Xu, X.H. Dai, D. Viehland, and D.A. Payne, J. Am. Ceram. Soc. 78, 2220 (1995).

    Article  Google Scholar 

  12. N.N. Krainik, Zh. Tekhn. Fiz 28, 525 (1958); Sov. Phys. Tech. Phys. 3, 493 (1958).

    CAS  Google Scholar 

  13. M. Troccaz, P. Gonnard, Y. Fetiveau, L. Eyraud, and G. Grange, Ferroelectrics 14, 679 (1976).

    Article  CAS  Google Scholar 

  14. P. Gonnard and M. Troccaz, J. Solid State Chem. 23, 321 (1978).

    Article  CAS  Google Scholar 

  15. F. Bauer, K. Vollrath, L. Eyraud, and Y. Fetiveau, in Ferroelectric energy conversion with PZT ceramics under shock loading, IEEE Ferroelectric subcommittee Fall Meeting (The American Ceramic Society, Dallas, TX, 1976).

    Google Scholar 

  16. Q. Tan, Z. Xu, J.F. Li, and D. Viehland, J. Appl. Phys. 80, 5866 (1996).

    Article  CAS  Google Scholar 

  17. X.H. Dai, Z. Xu, and D. Viehland, Philos. Mag. B70, 33 (1994).

    Article  Google Scholar 

  18. X.H. Dai, Z. Xu, and D. Viehland, J. Appl. Phys. 77, 5088 (1995).

    Google Scholar 

  19. R.D. Shannon, Acta Crystallogr. A32, 751 (1976).

    Article  CAS  Google Scholar 

  20. G. Shirane, Phys. Rev. 86, 219 (1952).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Q., Xu, Z. & Viehland, D. Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics. Journal of Materials Research 14, 4251–4258 (1999). https://doi.org/10.1557/JMR.1999.0576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0576

Navigation