Skip to main content
Log in

Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A Ni–Al–Cr alloy with an initial grain size of ∼60 μm was subjected to torsion straining to a strain of ∼7 at room temperature, thereby reducing the grain size to ∼34 nm. Similar torsion straining with samples of pure Cu and pure Ni gave grain sizes of ∼170 and ∼130 nm, respectively. Inspection of the Ni–Al–Cr alloy after torsion straining revealed highly strained regions containing dislocations associated with lattice distortions but with an absence of any Ni3Al ordered phase. The ultrafine grains in the Ni–Al–Cr alloy were extremely stable at high temperatures, and it was possible to retain a grain size of less than 100 nm after annealing at temperatures up to ∼900 K. By contrast, there was rapid grain growth in the samples of pure Cu and Ni at annealing temperatures in the vicinity of ∼500 K. The stability of the grains in the Ni–Al–Cr alloy is attributed to the formation of a Ni3Al-based ordered phase after annealing at ∼650–700 K. The presence of this phase also leads to an apparent negative slope in the standard Hall–Petch relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Microstructures, edited by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.

    Google Scholar 

  2. P.G. Sanders, G.E. Fougere, L.J. Thompson, J.A. Eastman, and J.R. Weertman, Nanostruct. Mater. 8, 243 (1997).

    Article  CAS  Google Scholar 

  3. C.C. Koch and Y.S. Cho, Nanostruct. Mater. 1, 207 (1992).

    Article  CAS  Google Scholar 

  4. J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Article  CAS  Google Scholar 

  5. C.C. Koch, Nanostruct. Mater. 9, 13 (1997).

    Article  CAS  Google Scholar 

  6. D.A. Rigney, Annu. Rev. Mater. Sci. 18, 141 (1988).

    Article  CAS  Google Scholar 

  7. R.Z. Valiev and N.K. Tsenev, in Hot Deformation of Aluminum Alloys, edited by T.G. Langdon, H.D. Merchant, J.G. Morris, and M.A. Zaidi, (Minerals, Metals, and Materials Society, Warrendale, PA, 1991), p. 319.

    Google Scholar 

  8. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Mater. Sci. Eng. 137A, 35 (1991).

    Article  Google Scholar 

  9. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov, Russian Metallurgy (Metally) 1, 99 (1981).

    Google Scholar 

  10. N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, and V.A. Sazonova, Fiz. Metal. Metalloved. 61, 1170 (1986).

    CAS  Google Scholar 

  11. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, J. Mater. Res. 11, 1880 (1996).

    Article  CAS  Google Scholar 

  12. Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon, J. Mater. Res. 13, 446 (1998).

    Article  CAS  Google Scholar 

  13. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 2973 (1996).

    Article  CAS  Google Scholar 

  14. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon, Acta Mater. 45, 4751 (1997).

    Article  CAS  Google Scholar 

  15. R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon, Scripta Mater. 37, 1945 (1997).

    Article  CAS  Google Scholar 

  16. P.B. Berbon, N.K. Tsenev, R.Z. Valiev, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, Metall. Mater. Trans. 29A, 2237 (1998).

    Article  CAS  Google Scholar 

  17. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon, Phil. Mag. Lett. 78, 313 (1998).

    Article  CAS  Google Scholar 

  18. A. Korznikov, O. Dimitrov, and G. Korznikova, Ann. Chim. 21, 443 (1996).

    CAS  Google Scholar 

  19. H. Senba and M. Igarashi, Mater. Trans. JIM 37, 821 (1996).

    Article  CAS  Google Scholar 

  20. H. Senba and M. Igarashi, Proceedings of the Second International Symposium on Structural Intermetallics (ISSI-2), edited by M.V. Nathal (Minerals, Metals, and Materials Society, Warrendale, PA, 1997), p. 595.

    Google Scholar 

  21. E.O. Hall, Proc. Phys. Soc. B64, 747 (1951).

    Article  CAS  Google Scholar 

  22. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  23. M. Watanabe, Z. Horita, and M. Nemoto, Ultramicroscopy 65, 187 (1996).

    Article  CAS  Google Scholar 

  24. J. Languillaume, F. Chmelik, G. Kapelski, F. Bordeaux, A.A. Nazarov, G. Canova, C. Esling, R.Z. Valiev, and B. Baudelet, Acta Metall. Mater. 41, 2953 (1993).

    Article  CAS  Google Scholar 

  25. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  26. R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet, Scripta Metall. Mater. 27, 855 (1992).

    Article  CAS  Google Scholar 

  27. J.R. Weertman and P.G. Sanders, Solid State Phenom. 35–36, 249 (1994).

    Google Scholar 

  28. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Philos. Mag. A 78, 203 (1998).

    Article  CAS  Google Scholar 

  29. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  30. T.G. Nieh and J. Wadsworth, Scripta Metall. Mater. 25, 955 (1991).

    Article  CAS  Google Scholar 

  31. R.O. Scattergood and C.C. Koch, Scripta Metall. Mater. 27, 1195 (1992).

    Article  CAS  Google Scholar 

  32. J. Lian and B. Baudelet, Nanostruct. Mater. 2, 415 (1993).

    Article  CAS  Google Scholar 

  33. S. Li, L. Sun and Z. Wang, Nanostruct. Mater. 2, 653 (1993).

    Article  CAS  Google Scholar 

  34. J.R. Weertman, Mater. Sci. Eng. A166, 161 (1993).

    Article  CAS  Google Scholar 

  35. J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen, Nature 391, 561 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh-ishi, K., Horita, Z., Smith, D.J. et al. Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni. Journal of Materials Research 14, 4200–4207 (1999). https://doi.org/10.1557/JMR.1999.0569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0569

Navigation