Skip to main content
Log in

Thermoelectric properties of sintered polycrystalline ZnIn2S4

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ceramic compacts of spinel-type ZnIn2S4 and IIIa-ZnIn2S4 polytype with a layer structure were synthesized by the reaction-sintering of mixed powders of ZnS and In2S3 at 723 K and 1073 K in Ar (containing 1° H2) atmosphere, respectively. The thermoelectric properties were investigated in the temperature range from 473 to 873 K. Thermoelectric figure of merit of the IIIa type was much larger than that of the spinel type, and it was slightly higher than the figure of merit of (ZnO)9In2O3, which is known to show the largest value among the oxide homologous compounds. To improve the thermoelectric properties, a c-plane-oriented sintered body of the IIIa polytype was successfully fabricated by a usual ceramic process. The figure of merit in the direction on the c plane was larger than on the ab plane due to higher electrical conductivity on the c plane and increased with increasing temperature showing the largest value of 1.3 × 10−4 K−1 at 873 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mora, C. Paorici, and N. Romeo, J. Appl. Phys. 42, 2061 (1971).

    Article  CAS  Google Scholar 

  2. N. Romeo, A. Dallaturca, R. Braglia, and G. Sberveglieri, Appl. Phys. Lett. 22, 21 (1973).

    Article  CAS  Google Scholar 

  3. A. Cingolani, M. Ferrara, A. Minafra, F. Adduci, and P. Tantalo, Phys. Status Solidi A 23, 367 (1974).

    Article  CAS  Google Scholar 

  4. E. Grilli and M. Guzzi, Phys. Status Solidi A 40, 69 (1977).

    Article  CAS  Google Scholar 

  5. V.F. Zhitar, N.A. Moldovyan, and S.I. Radautsan, Sov. Phys. Semicond. 13, 1100 (1979).

    Google Scholar 

  6. H. Ohta, W.S. Seo, and K. Koumoto, J. Am. Ceram. Soc. 79, 2193 (1996).

    Article  CAS  Google Scholar 

  7. M. Kazeoka, H. Hiramatsu, W.S. Seo, and K. Koumoto, J. Mater. Res. 13, 523 (1998).

    Article  CAS  Google Scholar 

  8. H. Hiramatsu, H. Ohta, W.S. Seo, and K. Koumoto, J. Jpn. Soc. Powder and Powder Metall. 44, 44 (1997).

    Article  CAS  Google Scholar 

  9. G.A. Slack, in New Materials and Performance Limits for Thermoelectric Cooling, CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), pp. 407–440.

    Google Scholar 

  10. A.N. Anagnostopoulos, C. Manolikas, D. Papadopoulos, and J. Spyridelis, Phys. Status Solidi A 72, 731 (1982).

    Article  CAS  Google Scholar 

  11. A.N. Anagnostopoulos, C. Manolikas, D. Papadopoulos, Phys. Status Solidi A 77, 595 (1983).

    Article  CAS  Google Scholar 

  12. M. Bianchetti, G. Herren, G. Lascalea, and N.E. Walsoe de Reca, Solid State Ionics 50, 115 (1992).

    Article  CAS  Google Scholar 

  13. J.A. Kalomiros, A.N. Anagnostopoulos, and J. Spyridelis, Semicond. Sci. Technol. 4, 563 (1989).

    Article  Google Scholar 

  14. K.J. Range, W. Becker, and A. Weiss, Z. Naturforsch., B: Chem. Sci. 24, 811 (1969).

    Article  CAS  Google Scholar 

  15. N. Berand and K.J. Range, J. Alloys Compd. 205, 295 (1994).

    Article  CAS  Google Scholar 

  16. N. Berand and K.J. Range, J. Alloys Compd. 241, 29 (1996).

    Article  CAS  Google Scholar 

  17. L. Baldassarre, V. Capozzi, G. Maggipinto, and A. Minafra, Phys. Status Solidi A 46, 589 (1978).

    Article  CAS  Google Scholar 

  18. F.W. Schmidlin, and G.G. Roberts, Phys. Rev. B: Solid State 9, 1578 (1974).

    Article  CAS  Google Scholar 

  19. A.N. Anagnostopoulos, Phys. Status Solidi A 75, 595 (1983).

    Article  CAS  Google Scholar 

  20. N. Frangis and C. Manolikas, Phys. Status Solidi A 107, 589 (1988).

    Article  CAS  Google Scholar 

  21. W.S. Seo and K. Koumoto (unpublished).

  22. L.V. Azaroff, and J.J. Brophy, in Electronic Processes in Materials (McGraw-Hill, New York, 1963), pp. 194–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, WS., Otsuka, R., Okuno, H. et al. Thermoelectric properties of sintered polycrystalline ZnIn2S4 . Journal of Materials Research 14, 4176–4181 (1999). https://doi.org/10.1557/JMR.1999.0565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0565

Navigation