Skip to main content
Log in

Nanocrystalline MnFe2O4 produced by niobium doping

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanosized MnFe2O4 phase with diameters in the range 13.7 to 100 nm were produced by calcination and sintering treatments in the system zNb2O5 · (50 – z)MnO · 50Fe2O3 with z having values between 0 and 20. Nb5+ ions are believed to give rise to vacancies in the Mn2+ sites, which break up the coupling of ferrimagnetically active oxygen polyhedra. The Curie temperature decreases as the size of the MnFe2O4 phase is reduced. This is explained on the basis of a decrease in the number of exchange pairs of the type Mn2+–Fe3+. The coercivity increases with a decrease in the size of the ferrimagnetic phase. This is believed to arise due to a decrease in saturation magnetization as the size of the MnFeO4 phase is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Farle and K. Baberschke, Phys. Rev. Lett. 58, 511 (1987).

    Article  CAS  Google Scholar 

  2. Z.X. Tang, C.M. Sorensen, K.J. Klabunde, and G.C. Hadji-panayis, Phys. Rev. Lett. 67, 3602 (1991).

    Article  CAS  Google Scholar 

  3. P.J. Van der Zaag, A. Noordermeer, M.T. Johnson, and P.F. Bongers, Phys. Rev. Lett. 68, 3112 (1992).

    Article  Google Scholar 

  4. A. Chatterjee, D. Das, S.K. Pradhan, and D. Chakravorty, J. Magn. Magn. Mater. 127, 214 (1993).

    Article  CAS  Google Scholar 

  5. J.E. Li, X. Dai, A. Chow, and D. Viehland, J. Mater Res. 10, 926 (1995).

    Article  CAS  Google Scholar 

  6. Z. Xu, X. Di, J.F. Li, and D. Viehland, Appl. Phys. Lett. 68, 1628 (1996).

    Article  CAS  Google Scholar 

  7. B.E. Warren, X-ray Diffraction (Addison-Wesley, Reading, MA, 1980), p. 253.

  8. B. Roy and D. Chakravorty, J. Phys. Condens. Matter 2, 9323 (1990).

    Article  CAS  Google Scholar 

  9. L. Pauling, Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1945).

    Google Scholar 

  10. F.H. Frei, S. Shtrikman, and D. Treves, Phys. Rev. 106, 446 (1957).

    Article  CAS  Google Scholar 

  11. E.F. Kneller and F.E. Luborsky, J. Appl. Phys. 34, 656 (1963).

    Article  CAS  Google Scholar 

  12. T. Sato, T. Iijima, M. Seki, and N. Inagaki, J. Magn. Magn. Mater. 65, 252 (1987).

    Article  CAS  Google Scholar 

  13. M. Stampanoni, A. Vaterlans, M. Aeschlimann, and F. Meier. Phys. Rev. Lett. 59, 2483 (1987).

    Article  CAS  Google Scholar 

  14. G.G. Kenning, J.M. Slaughter, and J.A. Cowen, Phys. Rev. Lett. 59, 2596 (1987).

    Article  CAS  Google Scholar 

  15. C.M. Schneider, P. Bressler, P. Schuster, and J. Kirschner, Phys. Rev. Lett. 64, 1059 (1990).

    Article  CAS  Google Scholar 

  16. M.N. Barber in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 145.

  17. A.B. van Groenou, P.F. Bongers, and A.L. Stuyts, Mater. Sci. Eng. 3, 317 (1968/1969).

  18. Z.J. Zhang, Z.L. Wang, B.C. Chakoumakos, and J.S. Yin, J. Am. Chem. Soc. 120, 1800 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, T.K., Chakravorty, D. Nanocrystalline MnFe2O4 produced by niobium doping. Journal of Materials Research 14, 3957–3961 (1999). https://doi.org/10.1557/JMR.1999.0535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0535

Navigation