Skip to main content
Log in

Point defect incorporation during diamond chemical vapor deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The incorporation of vacancies, H atoms, and sp2 bond defects into single-crystal homoepitaxial (100) (2 × 1)–and (111)-oriented chemical-vapor-deposited diamond was simulated by atomic-scale kinetic Monte Carlo. Simulations were performed for substrate temperatures from 600 to 1200 °C with 0.4% CH4 in the feed gas, and for 0.4–7% CH4 feeds with a substrate temperature of 800 °C. The concentrations of incorporated H atoms increased with increasing substrate temperature and feed gas composition, and sp2 bond trapping increased with increasing feed gas composition. Vacancy concentrations were low under all conditions. The ratio of growth rate to H atom concentration was highest around 800–900°C, and the growth rate to sp2 ratio was maximum around 1% CH4, suggesting that these conditions are ideal for economical diamond growth under simulated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhu, in Diamond: Electronic Properties and Applications, edited by L.S. Pan, and D.R. Kania (Kluwer, Norwell, MA, 1995) pp. 175–239.

  2. N.C. Burton, J.E. Butler, A.R. Lang, and J.W. Steeds, Proc. R. Soc. Lond. A 449, 555 (1995).

    Article  CAS  Google Scholar 

  3. D.G. Goodwin and J.E. Butler, in Handbook of Industrial Diamonds and Diamond Films, edited by M.A. Prelas, G. Popovici, and L.K. Bigelow (Dekker, New York, 1997) pp. 527.

  4. J.C. Angus, A. Argoitia, R. Gat, Z. Li, M. Sunkara, L. Wang, and Y. Wang, Phil. Trans. R. Soc. Lond. A 342, 195 (1993).

    Article  CAS  Google Scholar 

  5. R.C. DeVries, Ann. Rev. Mater. Sci. 17, 161 (1987).

    Article  CAS  Google Scholar 

  6. M.E. Coltrin and D.S. Dandy, J. Appl. Phys. 74, 5803 (1993).

    Article  CAS  Google Scholar 

  7. M. Frenklach and H. Wang, Phys. Rev. B 43, 1520 (1991).

    Article  CAS  Google Scholar 

  8. E.J. Dawnkaski, D. Srivastava, and B.J. Garrison, J. Chem. Phys. 104, 5997 (1996).

    Article  CAS  Google Scholar 

  9. M.M. Clark, L.M. Raff, and H.L. Scott, Comp. Phys. 10, 584 (1996).

    Article  Google Scholar 

  10. C. Battaile, D.J. Srolovitz, and J.E. Butler, in Thin Films: Surface and Morphology, edited by R. Cammarata, E. Chason, T. Einstein, and E. Williams, (Mater. Res. Soc. Symp. Proc. 441, Warrendale, PA, 1997) pp. 509.

  11. D.N. Belton and S.J. Harris, J. Chem. Phys. 96, 2371 (1992).

    Article  CAS  Google Scholar 

  12. S.J. Harris and D.G. Goodwin, J. Phys. Chem. 97, 23–28 (1993).

    Article  CAS  Google Scholar 

  13. S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 99, 5616 (1995).

    Article  CAS  Google Scholar 

  14. S.J. Harris and A.M. Weiner, Appl. Phys. Lett. 53, 1605 (1988).

    Article  CAS  Google Scholar 

  15. W.L. Hsu, Appl. Phys. Let. 59, 1427 (1991).

    Article  CAS  Google Scholar 

  16. F.G. Celii and J.E. Butler, J. Appl. Phys. 71, 2877 (1992).

    Article  Google Scholar 

  17. J. Warnatz, in Combustion Chemistry, edited by W.C. Gardiner (Springer-Verlag, Berlin, 1984).

  18. B.J. Garrison, E.J. Dawnkaski, D. Srivastava, D.W. Brenner, Science 255, 835 (1992).

    Article  CAS  Google Scholar 

  19. D.S. Dandy and M.E. Coltrin, J. Appl. Phys. 76, 3102 (1994).

    Article  CAS  Google Scholar 

  20. C.C. Battaile, D.J. Srolovitz, and J.E. Butler, J. Appl. Phys. 82, 6293 (1997).

    Article  CAS  Google Scholar 

  21. A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975).

    Article  Google Scholar 

  22. K.M. McNamara, B.E. Williams, K.K. Gleason, and B.E. Scruggs, J. Appl. Phys. 76, 2466 (1994).

    Article  CAS  Google Scholar 

  23. D.C. Ingram, J.C. Keay, C. Tang, M.L. Lake, and J-M. Ting, Diam. Rel. Mater. 2, 1414 (1993).

    Article  CAS  Google Scholar 

  24. H. Jia, J. Shinar, D.P. Lang, and M. Pruski, Phys. Rev. B 48, 17595 (1993).

    Article  CAS  Google Scholar 

  25. C.J. Chu, M.P. D’Evelyn, R.H. Hauge, and J.L. Margrave, J. Appl. Phys. 70, 1695 (1991).

    Article  CAS  Google Scholar 

  26. S.J. Harris, A.M. Weiner, S. Prawer, and K. Nugent, J. Appl. Phys. 80, 2187 (1996).

    Article  CAS  Google Scholar 

  27. J.E. Butler and R.L. Woodin, Phil. Trans. R. Soc. Lond. A 342, 209 (1993).

    Article  CAS  Google Scholar 

  28. K.E. Spear, J. Am. Ceram. Soc. 72, 171 (1989).

    Article  CAS  Google Scholar 

  29. E. Kondoh, T. Ohta, T. Mitomo, and K. Ohtsuka. J. Appl. Phys. 73, 3041 (1993).

    Article  CAS  Google Scholar 

  30. R.E. Rawles, W.G. Morris, and M.P. D’Evelyn, in Diamond for Electronic Applications, edited by D.L. Dreifus, A. Collins, T. Humphreys, K. Das, and P.E. Pehrsson, (Mater. Res. Soc. Symp. Proc. 416, Pittsburgh, PA, 1996) pp. 13.

  31. C.J. Chu, R.H. Hauge, J.L. Margrave, and M.P. D’Evelyn, Appl. Phys. Lett. 61, 1393 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaile, C.C., Srolovitz, D.J. & Butler, J.E. Point defect incorporation during diamond chemical vapor deposition. Journal of Materials Research 14, 3439–3446 (1999). https://doi.org/10.1557/JMR.1999.0465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0465

Navigation