Skip to main content
Log in

Fractional factorial design applied to optimize experimental conditions for preparation of ultrafine lanthanum-doped strontium titanate powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A fractional factorial design was implemented to optimize the experimental conditions for the preparation of ultrafine lanthanum-doped strontium titanate from titanyl acylate precursors. The effects of preparation conditions such as the molar ratio of acetic acid to titanium alkoxide, the water to titanium alkoxide ratio, pH value, the reaction temperature, and stirring speed were systematically studied by using Taguchi orthogonal array design. Results indicated that the effects of the reaction temperature and stirring speed on the reaction were the key variables influencing the average particle size of powders obtained. By combining the optimal settings of the two influential processing variables, it was possible to obtain an ultrafine powder with a particle size of about 340 Å. This was put to a test in the laboratory, and a polycrystalline, narrow size distribution ultrafine SrTiO3 powder that had a particle size of about 380 Å and readily sintered at 1150–1250 °C was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tuchiya, T. Kawano, T. Sei, and J. Hatano, J. Ceram. Soc. Jap. 98(8), 743 (1990).

    Article  CAS  Google Scholar 

  2. G. Pfaff, J. Mat. Chem. 3, 721 (1993).

    Article  CAS  Google Scholar 

  3. H. Salze, P. Odier, and B. Cales, J. Non-Cryst. Solids 82, 314 (1986).

    Article  CAS  Google Scholar 

  4. A. Mosset, I. Gautier-Luneau, and J. Galy, J. Non-Cryst. Solids 100, 339 (1988).

    Article  CAS  Google Scholar 

  5. D. Hennings, G. Rosentein, and H. Schreinemacher, J. Eur. Ceram. Soc. 8, 107 (1991).

    Article  CAS  Google Scholar 

  6. K. Kiss, J. Magder, M.S. Vukasovich, and R.J. Lockhart, J. Am. Ceram. Soc. 59(6), 291 (1966).

    Article  Google Scholar 

  7. C.F. Kao and W.D. Yang, Mat. Sci. Eng. B38, 127 (1996).

    Article  CAS  Google Scholar 

  8. C.F. Kao and W.D. Yang, Ceram. Int. 22, 57 (1996).

    Article  Google Scholar 

  9. M.I. Diaz-Guemes, T.G. Carreno, and C.J. Serna, J. Mat. Sci. 24, 1011 (1989).

    Article  CAS  Google Scholar 

  10. P.P. Phulé and S.H. Risbud, Adv. Ceram. Mat. 3 (2), 183 (1988).

    Article  Google Scholar 

  11. B. Samuneva, D. Jambazov, D. Lepkova, and Y. Dimitriev, Ceram. Int. 16, 355 (1990).

    Article  CAS  Google Scholar 

  12. M.V. Raymond and V.R.W. Amarakoon, J. Am. Ceram. Soc. 73 (5), 1308 (1990).

    Article  CAS  Google Scholar 

  13. P.P. Phulé and S.H. Risbud, Mat. Sci. Eng. B3, 241 (1989).

    Article  Google Scholar 

  14. R.L. Perrier, A. Safari, and R.E. Riman, Mater. Res. Bull. 26, 1067 (1991).

    Article  CAS  Google Scholar 

  15. C.H. Yang, S.M. Lin, and T.C. Wen, Poly. Eng. Sci. 26, 146 (1994).

    Google Scholar 

  16. S.M. Lin and T.C. Wen, J. Appl. Electrochem. 23, 487–494 (1993).

    CAS  Google Scholar 

  17. K.N. Anand, S.M. Bhadkamkar, and R. Moghe, Quality Eng. 7(1), 187 (1994–1995).

  18. Taguchi and Genichi, Tables of Orthogonal Arrays and Linear Graphs (Maruzen, Tokyo, Japan, 1962).

    Google Scholar 

  19. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).

    Article  CAS  Google Scholar 

  20. Taguchi and Genichi, System of Experimental Design (UNIPUB, New York and American Supplier Institute, Dearborn, MI, 1988) Vols. 1 and 2.

  21. J.M. Wilson and D.L. Coller, U.S. Patent No. 4 670 243 (1987).

  22. P.J. Rose, Taguchi Techniques for Quality Engineering, 2nd ed. (McGraw-Hill, New York, 1996), pp. 75–90.

  23. G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building (Wiley, New York, 1978), pp. 630–640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WD., Hsieh, CS. Fractional factorial design applied to optimize experimental conditions for preparation of ultrafine lanthanum-doped strontium titanate powders. Journal of Materials Research 14, 3410–3416 (1999). https://doi.org/10.1557/JMR.1999.0461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0461

Navigation