Skip to main content
Log in

Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrical properties of hydrothermally grown epitaxial pseudocubic BaTiO3 thin films formed on epitaxial electrode layers of SrRuO3 on SrTiO3 single crystal substrates have been evaluated by variable frequency dielectric testing. The initial as-synthesized BaTiO3 film displayed a dielectric constant of 450 with very high losses (tan δ ˜ ~ 100%) at 10 kHz due to OH and H2O, incorporated during growth, contributing to migration losses within the film. Improvements were seen with increasing postprocessing heat-treatment time and temperature with improved properties seen after a heat treatment at 300 °C for 24 h (ε ˜ ~ 200, tan δ ˜ ~ 8%). Relationships were established for dielectric constant and loss tangent with structural changes observed by Fourier transform infrared spectroscopy, thermal gravimetric analysis, nuclear magnetic resonance spectroscopy, and x-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Sheppard, Ceram. Bull. 71, 85 (1992).

    Google Scholar 

  2. F.F. Lange, Science 273, 903 (1996).

    Article  CAS  Google Scholar 

  3. A.T. Chien, J.S. Speck, F.F. Lange, A. Daykin, and C. Levi, J. Mater. Res. 10, 1784 (1995).

    Article  CAS  Google Scholar 

  4. W. Xu, L. Zheng, H. Xin, C. Lin, and M. Okuyama, J. Mater. Res. 11, 821 (1996).

    Article  CAS  Google Scholar 

  5. A.T. Chien, J.S. Speck, and F.F. Lange, J. Mater. Res. 12, 1176 (1997).

    Article  CAS  Google Scholar 

  6. G. Goh and F.F. Lange (unpublished).

  7. D. Kasailas and F.F. Lange (unpublished).

  8. A.T. Chien, L. Zhao, M. Colic, J.S. Speck, and F.F. Lange, J. Mater. Res. 13, 649 (1998).

    Article  CAS  Google Scholar 

  9. M. Izuha, K. Abe, and N. Fukushima, Jpn. J. Appl. Phys. 36, 5866 (1997).

    Article  CAS  Google Scholar 

  10. K. Kajiyoshi, N. Ishizawa, and M. Yoshimura, Jpn. J. Appl. Phys. 30, L120 (1991).

    Article  CAS  Google Scholar 

  11. J. Gong, M. Kawasaki, K. Fujito, U. Tanaka, N. Ishizawa, M. Yoshimoto, H. Koinuma, M. Kumagai, K. Hirai, and K. Horiguchi, Jpn. J. Appl. Phys. 32, L687 (1993).

    Article  CAS  Google Scholar 

  12. C. Chern, Z. Zhao, L. Luo, P. Lu, Y. Li, P. Norris, B. Kear, F. Cosandey, C. Maggiore, B. Gallois, and B. Wilkens, Appl. Phys. Lett. 60, 1144 (1992).

    Article  CAS  Google Scholar 

  13. K. Iijima, T. Terashima, K. Yamamoto, K. Hirata, and Y. Bando, Appl. Phys. Lett. 56, 527 (1990).

    Article  CAS  Google Scholar 

  14. L. Wills and J. Amano, in Ferroelectric Thin Films IV, edited by B. Tuttle, S. Desu, R. Ramesh, and T. Shiosake (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 471.

  15. W. Zhu, S. Sheikh, A. Akbar, R. Asiaie, and P. Dutta, Jpn. J. Appl. Phys. 36, 214 (1997).

    Article  CAS  Google Scholar 

  16. K. Fukai, K. Hidaka, M. Aoki, and K. Abe, Ceram. Int. 16, 285 (1990).

    Article  CAS  Google Scholar 

  17. C. Cho, M. Jang, S. Jeong, S. Lee, and B. Lim, Mater. Lett. 23, 203 (1995).

    Article  CAS  Google Scholar 

  18. D. Hennings and S. Schreinemacher, J. Eur. Ceram. Soc. 9, 41 (1992).

    Article  CAS  Google Scholar 

  19. T. Noma, S. Wada, M. Yano, and T. Suzuki, J. Appl. Phys. 80, 5223 (1996).

    Article  CAS  Google Scholar 

  20. R. Vivekanandan, S. Philip, and T. Kutty, Mater. Res. Bull. 22, 99 (1986).

    Article  Google Scholar 

  21. B. Begg, E. Vance, and J. Nowotny, J. Am. Ceram. Soc. 77, 3186 (1994).

    Article  CAS  Google Scholar 

  22. E. Shi, C. Xia, W. Zhong, B. Wangm, and J. Guo, J. Am. Ceram. Soc. 80, 1567 (1997).

    Article  CAS  Google Scholar 

  23. H.W. Spieß, B.B. Garrett, R.K. Sheline, and S.W. Rabideau, J. Chem. Phys. 51, 1201 (1969).

    Article  Google Scholar 

  24. P. Waldstein, S.W. Rabideau, and J.A. Jackson, J. Chem. Phys. 41, 3407 (1964).

    Article  CAS  Google Scholar 

  25. J.M. Kobe, T.J. Gluszak, J.A. Dumesic, and T.W. Root, J. Phys. Chem. 99, 5485 (1995).

    Article  CAS  Google Scholar 

  26. L. Hench and J. West, Principles of Electronic Ceramics (Wiley, New York, 1990).

    Google Scholar 

  27. H. Iwahara, Solid State Ionics 28–30, 573 (1988).

    Article  Google Scholar 

  28. R. Waser, J. Am. Ceram. Soc. 71, 58 (1988).

    Article  CAS  Google Scholar 

  29. S. Kapphan and G. Weber, Ferroelectrics 37, 673 (1981).

    Article  CAS  Google Scholar 

  30. S. Kapphan, J. Koppitz, and G. Weber, Ferroelectrics 25, 585 (1980).

    Article  CAS  Google Scholar 

  31. N. Sata, K. Hiramoto, M. Ishigame, S. Hosoya, N. Niimura, and S. Shin, Phys. Rev. B 54, 15795 (1996).

    Article  CAS  Google Scholar 

  32. G. Yi, B. Block, and B. Wessels, Appl. Phys. Lett. 71, 327 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, A.T., Xu, X., Kim, J.H. et al. Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis. Journal of Materials Research 14, 3330–3339 (1999). https://doi.org/10.1557/JMR.1999.0451

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0451

Navigation