Skip to main content
Log in

Effect of the deposition temperature on the properties of iridium thin films grown by means of pulsed laser deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pulsed laser deposition (PLD) of Ir thin films has been achieved by ablating an iridium target with a KrF excimer laser. The iridium deposition rate was investigated, over the (0.4–2) × 109 W/cm2 laser intensity range, and found to reach its maximum at (1.6 ± 0.1) × 109 W/cm2. At this laser intensity, the PLD Ir films were deposited at substrate deposition temperatures ranging from 20 to 600 °C. The PLD Ir films exhibited a (111) preferentially oriented polycrystalline structure with their average grain size increasing from about 10 to 30 nm as the deposition temperature was raised from 20 to 600 °C. Their mean surface microroughness (Ra) was found to change from an average value of about 1 nm in the 20–400 °C temperature range to a value of about 4.5 nm at 600 °C. As the deposition temperature is varied from 20 to 600 °C, not only does the stress of PLD Ir films change drastically from highly compressive (−2.5 GPa) to tensile (+0.8 GPa), but their room-temperature resistivity also gradually decreases in the 20–400 °C range and stabilizes for higher temperatures. In the 400–600 °C range, the resistivity of PLD Ir films was as low as 6.0 ± 0.2 μΩ cm, which is very close to the iridium bulk value of 5.1 μΩ cm. Thus, PLD Ir films exhibiting not only the lowest resistivity but also a nearly zero stress level can be grown at a deposition temperature of about 400 °C. The resistivity of the PLD Ir films can be described by a grain boundary scattering model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mumtaz, J. Echigoya, T. Hirai, and Y. Shindo, Mater. Sci. Eng. A 167, 187 (1993).

    Article  Google Scholar 

  2. T. Gerfin, W.J. Hälg, F. Atamny, and K-H. Dahmen, Thin Solid Films 241, 352 (1993).

    Article  Google Scholar 

  3. G.T.A. Kovacs, C.W. Storment, and S.P. Kounaves, Sens. Actuators B 23, 41 (1995).

    Article  CAS  Google Scholar 

  4. P.R.M. Silva, M.A. El Khakani, M. Chaker, G.Y. Champagne, J. Chevalet, L. Gastonguay, R. Lacasse, and M. Ladouceur, Anal. Chim. Acta. 385, 249 (1999).

    Article  CAS  Google Scholar 

  5. Solubility Data Series—Metals in Mercury, edited by C. Hirayama, Z. Galus, and C. Guminski. (Pergamon Press, Oxford, U.K., 1986), Vol. 25.

  6. M.A. El Khakani, M. Chaker, and B. Le Drogoff, J. Vac. Sci. Technol. A 16, 885 (1998).

    Article  Google Scholar 

  7. G.M. Mikhailov, I.V. Malikov, A.V. Chernykh, and V.T. Petrashov, Thin Solid Films 293, 315 (1997).

    Article  CAS  Google Scholar 

  8. M.A. El Khakani, E. Gat, Y. Beaudoin, M. Chaker, C. Monteil, D. Guay, G. Létourneau, and H. Pépin, Proc. SPIE-Int. Soc. Opt. Eng. 2403, 153 (1995).

    Google Scholar 

  9. Q.X. Jia, S.G. Song, S.R. Foltyn, and X.D. Wu, J. Mater. Res. 10, 2401 (1995).

    Article  CAS  Google Scholar 

  10. M.A. El Khakani, M. Chaker, and E. Gat, Appl. Phys. Lett. 69, 2027 (1996).

    Article  CAS  Google Scholar 

  11. Pulsed Laser Deposition of Thin Films, edited by D.B. Chrisey and G.K. Hubler (John Wiley & Sons, Inc., New York, 1994).

  12. M.A. El Khakani, M. Chaker, A. Jean, S. Boily, H. Pépin, J.C. Kieffer, and S.C. Gujrathi, J. Appl. Phys. 74, 2834 (1993).

    Article  Google Scholar 

  13. H.W. Bergmann, K. Schutte, E. Schubert, and A. Emmel, App. Surf. Sci. 86, 259 (1995).

    Article  CAS  Google Scholar 

  14. Y. Hiroshima, T. Ishiguro, I. Urata, H. Makita, H. Ohta, M. Tohogi, and Y. Ichinose, J. Appl. Phys. 79, 3572 (1996).

    Article  CAS  Google Scholar 

  15. Powder Diffraction File, Card No. 06-0598, International Center for Diffraction Data, Swarthmore, PA (1995).

  16. H.N. Al-Shareef, K.D. Gifford, S.H. Rou, P.D. Hren, O. Auciello, and A.I. Kingon, Intergrat. Ferroelect. 3, 321 (1993).

    Article  CAS  Google Scholar 

  17. N.V. Gelfond, F.V. Tuzikov, and I.K. Igumenov, Thin Solid Films 227, 144 (1993).

    Article  CAS  Google Scholar 

  18. Encyclopedia of Materials Science and Engineering, edited by M.B. Bever (Pergamon Press, Oxford, U.K., 1986), Vol. 5, p. 3577.

  19. Metals Handbook, 10th ed., edited by J.R. Davis et al. (ASM International, Materials Park, OH, 1990), Vol. 2, p. 1117.

  20. K.E. Peterson, Proc. IEEE 70, 420 (1982).

    Article  Google Scholar 

  21. E. Selbach, H. Jacques, K. Eiermann, B. Lengeler, and W. Schilling, Thin Solid Films 149, 17 (1987).

    Article  CAS  Google Scholar 

  22. A.F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).

    Article  Google Scholar 

  23. L. Krusin-Elbaum, Thin Solid Films 169, 17 (1989).

    Article  CAS  Google Scholar 

  24. G.K. Reeves, M.W. Lwan, and R.G. Elliman, J. Vac. Sci. Technol. A 10, 3203 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El Khakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Khakani, M.A., Drogoff, B.L. & Chaker, M. Effect of the deposition temperature on the properties of iridium thin films grown by means of pulsed laser deposition. Journal of Materials Research 14, 3241–3246 (1999). https://doi.org/10.1557/JMR.1999.0438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0438

Navigation