Skip to main content
Log in

A novel approach for identifying and synthesizing highdielectric materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Modern telecommunications require materials with high dielectric constants (κ). The number of suitable elements ultimately limits one approach to the discovery of new materials, targeting compositions with high atomic polarizabilities (α). By decreasing the molar volume of compositions with high α, however, we anticipated dramatic increases in κ and demonstrated that this approach works. The quenched high-pressure perovskite polymorph of Na2MTeO6 (M = Ti, Sn) showed a twofold increase in κ, compared to the ilmenite form. This result suggested the highest values of κ occur for compositions with high α, which form quenchable compounds at high pressures and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Roberts, Phys. Rev. 81, 865 (1951); A.C. Lasaga and R.T. Cygan, Am. Mineral. 67, 328 (1982).

    Article  CAS  Google Scholar 

  2. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

  3. S. Kawashima, N. Nishida, I. Ueda, and H. Ouchi, J. Am. Ceram. Soc. 66, 421 (1983); K. Wakino, K. Minai, and H. Tamura, J. Appl. Phys. 67, 278 (1984); E.L. Colla, N. David, C. Rau, and N. Setter, Ferroelectrics 184, 151 (1996).

    Article  CAS  Google Scholar 

  4. E.D. Isaacs, M. Marcus, G. Aeppli, X.D. Xiang, X.D. Sun, P. Schultz, H.K. Kao, G.S. Cargill, and R. Haushalter, Appl. Phys. Lett. 73, 1820 (1998); I. Takeuchi, H. Chung, C. Gao, P.G. Schultz, X.D. Xiang, R.P. Sharma, M.J. Downes, and T. Venkatesan, Appl. Phys. Lett. 73, 894 (1998); S.M. Senkan, Nature 394, 350 (1998); H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P.G. Schultz, X.D. Xiang, R.P. Sharma, M. Downes, and T. Venkatesan, Appl. Phys. Lett. 72, 2185 (1998).

    Article  CAS  Google Scholar 

  5. E. Havinga and A.J. Bosman, Phys. Rev. 140A, 292 (1965).

    Article  Google Scholar 

  6. J.-H. Park, P.M. Woodward, and J.B. Parise, Chem. Mater. 10, 3092 (1998).

    Article  CAS  Google Scholar 

  7. P.M. Woodward, A.W. Sleight, L-S. Du, and C.P. Grey (1999, in press).

  8. A.M. Glazer, Acta Crystallogr. B28, 3384 (1972); P.M. Woodward, Acta Crystallogr. B53, 32 (1997).

    Google Scholar 

  9. M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993).

    Article  CAS  Google Scholar 

  10. A. Grzechnik, P.F. McMillan, and W. Petuskey, in Ion-Solid Interactions for Materials Modification and Processing, edited by D.B. Poker, D. Ila, Y-T. Cheng, L.R. Harriott, and T.W. Sigmon (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 501.

  11. T. Negas, G. Yeager, S. Bell, and R. Amren, in NIST Special Publication 804 Chemistry of Electronic Ceramic Materials, edited by P.K. Davies and R.S. Roth (NIST, Gaithersburg, MD, 1990), p. 21.

  12. J. Choisnet, A. Rulmont, P. Tarte, J. Solid State Chem. 75, 124 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Parise, J.B., Woodward, P.M. et al. A novel approach for identifying and synthesizing highdielectric materials. Journal of Materials Research 14, 3192–3195 (1999). https://doi.org/10.1557/JMR.1999.0429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0429

Navigation