Skip to main content
Log in

Phase evolution in Ni–Nb multilayers upon solid-state reaction

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solid-state amorphization was achieved in the Ni48Nb52 multilayers upon thermal annealing by gradually raising the temperature from 250 to 400 °C and staying at 400 °C for 2 h. More interestingly, before complete amorphization, a sequential disordering of first Ni and then Nb crystalline lattices was observed for the first time, and it was essentially the physical origin of an asymmetric growth of the amorphous interlayer during solid-state reaction reported previously in some binary metal systems. In another two multilayered samples with overall compositions of Ni64Nb36 and Ni70Nb30, thermal annealing under similar conditions resulted in the formation of two metastable crystalline phases with face-centered-cubic and hexagonal-close-packed structures, respectively, although an amorphous phase also appeared and coexisted with one of the metastable crystalline phases in the intermediate states. In the ion mixing experiment, such sequential disordering, as well as formation of metastable phases, was also observed in the respective Ni–Nb multilayers upon room-temperature 200-keV xenon ion irradiation. Comparatively, however, ion irradiation eventually induced complete amorphization in all the multilayers at the respective doses, indicating that ion-induced disordering frequently predominated in the competition between amorphization and the growth of a metastable crystalline phase. A Gibbs free energy diagram, including the free energy curves of the newly formed metastable crystalline phases, of the Ni–Nb system was calculated based on Miedema’s model. The constructed free energy diagram can give reasonable explanations of the sequential disordering and the thermodynamic possibility of the formation of either an amorphous or a metastable crystalline phase, of which the free energy difference was quite small. It follows naturally that the phase selection, namely, which phase was more favored to be formed eventually than its competitors, was influenced or even determined by the kinetics involved in the respective processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Johnson, Prog. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  2. A. Blatter and M. Von Allmen, Phys. Rev. Lett. 54, 2103 (1985).

    Article  CAS  Google Scholar 

  3. H.U. Krebs, D.J. Webb, and A.F. Marshall, Phys. Rev. B 35, 5393 (1987).

    Article  Google Scholar 

  4. R.B. Schwarz and W.L. Johnson, Phys. Rev. Lett. 51, 415 (1985).

    Article  Google Scholar 

  5. K. Samwer, H.J. Fecht, and W.L. Johnson, in Topics in Applied Physics: Amorphization in Metallic Systems, edited by B. Guntherodt (Springer-Verlag Berlin Heidelberg, 1994), Vol. 72, p. 26.

  6. E. Ma, C.W. Niel, M.A. Nicolet, and W.L. Johnson, J. Mater. Res. 4, 1299 (1989).

    Article  CAS  Google Scholar 

  7. J.R. Ding, D.Z. Che, H.B. Zhang, K. Tao, and B.X. Liu, Appl. Phys. Lett. 60, 944 (1992).

    Article  CAS  Google Scholar 

  8. Z.J. Zhang and B.X. Liu, J. Appl. Phys. 76, 3315 (1994).

    Google Scholar 

  9. H. Schroder, K. Samwer, and U. Koster, Phys. Rev. Lett. 54, 197 (1985).

    Article  CAS  Google Scholar 

  10. W.J. Meng, C.W. Nieh, and W.L. Johnson, Appl. Phys. Lett. 51, 1693 (1987).

    Article  CAS  Google Scholar 

  11. Q. Zhang, W.S. Lai, and B.X. Liu, Phys. Rev. B 58, 14020 (1998).

    Article  CAS  Google Scholar 

  12. Z.J. Zhang, H.Y. Bai, Q.L. Qiu, T. Yang, K. Tao, and B.X. Liu, J. Appl. Phys. 73, 1702 (1993).

    Article  CAS  Google Scholar 

  13. J.A. Alonso and S. Simozar, Solid State Commun. 46, 765 (1983).

    Article  Google Scholar 

  14. A.R. Miedema, F.R. de Boer, and P.F. de Boer, J. Phys. F3, 1588 (1983).

    Google Scholar 

  15. L.J. Gallego, J.A. Somozar, J.A. Alonso, and J.M. Lopez, Physica B 154, 82 (1988).

    Article  CAS  Google Scholar 

  16. A. Blatter, J. Gfeller, and M.V. Allmen, J. Less-Common. Met. 140, 317 (1988).

    Article  CAS  Google Scholar 

  17. B.X. Liu and Z.J. Zhang, Phys. Rev. B 49, 12519 (1994).

    Article  CAS  Google Scholar 

  18. Z.J. Zhang, O. Jin, and B.X. Liu, Phys. Rev. B 51, 8067 (1995).

    Google Scholar 

  19. Z.J. Zhang and B.X. Liu, Phys. Rev. B 51, 16475 (1995).

    Article  CAS  Google Scholar 

  20. Z.J. Zhang and B.X. Liu, J. Appl. Phys. 73, 3315 (1994).

    Google Scholar 

  21. M. Lopez, J.A. Alonso, and L.J. Gallego, Phys. Rev. B 36, 3716 (1987).

    Article  CAS  Google Scholar 

  22. A.W. Weeber, J. Phys. E 17, 809 (1987).

    CAS  Google Scholar 

  23. A.K. Niessen, A.R. Miedema, F.R. de Boer, and R. Boom, Physica B 151, 401 (1988).

    Article  CAS  Google Scholar 

  24. F.R. de Boer, R. Boom, W.C. Matter, A.R. Miedema, and A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (Northland, Amsterdam, 1988).

  25. Q. Zhang, W.S. Lai, and B.X. Liu (unpublished).

  26. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. X. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G.W., Lin, C. & Liu, B.X. Phase evolution in Ni–Nb multilayers upon solid-state reaction. Journal of Materials Research 14, 3027–3036 (1999). https://doi.org/10.1557/JMR.1999.0406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0406

Navigation