Skip to main content
Log in

Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sputtered copper and tungsten thin films both with and without tungsten and chromium superlayers were tested by using nanoindentation probing to initiate and drive delamination. The adhesion energies of the films were calculated from the induced delaminations using the analysis presented in “Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics.” Copper films ranging in thickness from 150 to 1500 nm in the as-sputtered condition had measured adhesion energies ranging from 0.2 to 2 J/m2, commensurate with the thermodynamic work of adhesion. Tungsten films ranging in thickness from 500 to 1000 nm in the as-sputtered condition had measured adhesion energies ranging from 5 to 15 J/m2. The superlayer was shown to induce radial cracking when under residual tension, resulting in underestimation of the adhesion energy when the film was well adhered. Under conditions of weak adherence or residual compression, the superlayer provided an excellent means to induce a delamination and allowed an accurate and reasonably precise quantitative measure of thin film adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Marshall and A.G. Evans, J. Appl. Phys. 56, 2632 (1984).

    Article  CAS  Google Scholar 

  2. G. Bao, S. Ho, B. Fan, and Z. Suo, Int. J. Sol. Struc. 29, 1105 (1990).

    Article  Google Scholar 

  3. Z. Suo, J. Appl. Mech. 57, 627 (1990).

    Article  Google Scholar 

  4. Z. Suo and J.W. Hutchinson, Mater. Sci. Eng. A107, 135 (1989).

    Article  Google Scholar 

  5. J.S. Wang and Z. Suo, Acta Metall. 38, 1279 (1990).

    Article  CAS  Google Scholar 

  6. T.L. Becker, Jr, J.M. McNaney, R.M. Cannon, and R.O. Ritchie, Mech. Mater. 25, 291 (1997).

    Article  Google Scholar 

  7. A. Bagchi, G.E. Lucas, Z. Suo, and A.G. Evans, J. Mater. Res. 9, 1734 (1994).

    Article  CAS  Google Scholar 

  8. M.P. deBoer and W.W. Gerberich, Acta Metall. 44, 3169 (1996).

    CAS  Google Scholar 

  9. M.P. deBoer and W.W. Gerberich, Acta Metall. 44, 3177 (1996).

    CAS  Google Scholar 

  10. M.P. deBoer, M.D. Kriese, and W.W. Gerberich, J. Mater. Res. 12, 2673 (1997).

    Article  CAS  Google Scholar 

  11. M.D. Kriese, N.R. Moody, and W.W. Gerberich, in Boundaries and Interfaces in Materials: The David A. Smith Symposium, edited by R.C. Pond, W.A.T. Clark, and A.H. King (TMS, Warrendale, PA, 1998), p. 113.

  12. M.D. Kriese, N.R. Moody, and W.W. Gerberich, in Thin Films—Stresses and Mechanical Properties VII, edited by R.C. Cammarata, M. Nastasi, E.P. Busso, and W.C. Oliver (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 363.

  13. S.W. Russell, S.A. Rafalski, R.L. Spreitzer, J. Li, M. Moinpour, F. Moghadam, and T.L. Alford, Thin Solid Films 262, 154 (1995).

    Article  CAS  Google Scholar 

  14. G.C. Stoney, Proc. R. Soc. Lond. A82, 172 (1909).

    Google Scholar 

  15. W.D. Nix, Metall. Trans. A 20A, 2217 (1988).

    Google Scholar 

  16. M. deBoer, Ph.D. dissertation, University of Minnesota (1996).

  17. M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992).

  18. T.W. Wu, J. Mater. Res. 6, 407 (1991).

    Article  Google Scholar 

  19. T.Y. Tsui, C.A. Ross, and G.M. Pharr, in Materials Reliability in Microelectronics VII, edited by J.J. Clement, R.R. Keller, K.S. Krisch, J.J.E. Sanchez, and Z. Suo (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), pp. 57–62.

  20. CRC Handbook of Chemistry and Physics, edited by D.R. Lide (CRC Press, New York, 1993).

  21. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (John Wiley & Sons, Inc., New York, 1976).

  22. A.G. Evans, M. Rühle, B.J. Dalgleish, and P.G. Charalambides, Mater. Sci. Eng. A126, 53 (1990).

    Article  CAS  Google Scholar 

  23. T. Hong, J.R. Smith, and D.J. Srolovitz, Acta Metall. 43, 2721 (1995).

    Article  CAS  Google Scholar 

  24. A. Bagchi and A.G. Evans, Thin Solid Films 286, 203 (1996).

    Article  CAS  Google Scholar 

  25. J.W. Hutchinson and Z. Suo, in Advances in Applied Mechanics, edited by J.W. Hutchinson and T.Y. Hu (Academic Press, Inc., New York, 1992), pp. 63–169.

  26. V. Tvergaard and J.W. Hutchinson, J. Mech. Phys. Sol. 41, 1119 (1993).

    Article  Google Scholar 

  27. A.G. Evans and J.W. Hutchinson, Acta Metall. 37, 909 (1989).

    CAS  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 564 (1992).

    Article  Google Scholar 

  29. H.M. Jensen, Eng. Frac. Mech. 40, 475 (1991).

    Article  Google Scholar 

  30. G. Gioia and M. Ortiz, in Advances in Applied Mechanics, edited by J.W. Hutchinson and T.Y. Hu (Academic Press, Inc., New York, 1997), pp. 120–192.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriese, M.D., Gerberich, W.W. & Moody, N.R. Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W. Journal of Materials Research 14, 3019–3026 (1999). https://doi.org/10.1557/JMR.1999.0405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0405

Navigation