Skip to main content
Log in

Dislocation structure of low-angle grain boundaries in YBa2Cu3O7−δ/MgO films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grain boundaries in laser-deposited YBa2Cu3O7−δ (YBCO)/MgO thin films have been investigated by high-resolution transmission electron microscopy. The films exhibit perfect texturing with YBCO(001)/MgO(001) giving rise to low-angle [001] tilt grain boundaries resulting from the grains with the c axis normal to the substrate surface and with misorientation in the a-b plane. The atomic structure of the grain boundaries was analyzed by using a dislocation model. Low-angle grain boundaries have been found to be aligned along (100) and (110) interface planes. For the (110) boundary plane, the low-energy dislocation configuration was found to consist of an array of alternating [100] and [010] dislocations. We have calculated the energy of various configurations and shown that the energy of the (110) boundary with dissociated dislocations is comparable to that of the (100) boundary, which explains the coexistence of (100) and (110) interface facets along the boundary. We have also modeled critical current transport through grain boundaries with various structures and found that the low-energy (110) grain boundary with dissociated dislocation array is expected to transport a lower superconducting current (by 25% for 6° misorientation) than (100) boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chaudhari, J. Mannhart, D. Dimos, C.C. Tsuei, J. Chi, M.M. Oprysko, and M. Scheuermann, Phys. Rev. Lett. 60, 1653 (1988).

    Article  CAS  Google Scholar 

  2. D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).

    Article  CAS  Google Scholar 

  3. R. Gross and B. Mayer, Physica C 180, 1 (1991).

    Article  Google Scholar 

  4. K. Jagannadham and J. Narayan, Phil. Mag. B 61, 129 (1990).

    Article  CAS  Google Scholar 

  5. S.E. Babcock, X.Y. Cai, D.L. Kaiser, and D.C. Larbalestier, Nature 347, 167 (1990).

    Article  CAS  Google Scholar 

  6. K. Jagannadham and J. Narayan, Mat. Sci. Eng. B 14, 214 (1992).

    Article  Google Scholar 

  7. Y. Zhu, J.M. Zuo, A.R. Moodenbaught, and M. Suenaga, Phil. Mag. A 70, 969 (1994).

    Article  CAS  Google Scholar 

  8. N.D. Browning, M.F. Chisholm, S.J. Pennycook, D.P. Norton, and D.H. Lowndes, Physica C 212, 185 (1993).

    Article  CAS  Google Scholar 

  9. Z.G. Ivanov, N. Fogel, P.A. Nilsson, E.A. Stepantsov, and A. Tzalenchuk, Physica C 235, 3253 (1994).

    Article  Google Scholar 

  10. S. McKernan, M.G. Norton, and C.B. Carter, J. Mater. Res. 7, 1052 (1992).

    Article  CAS  Google Scholar 

  11. N.D. Browning, J.P. Buban, P.D. Nellist, D.P. Norton, M.F. Chisholm, and S.J. Pennycock, Physica C 294, 183 (1998).

    Article  CAS  Google Scholar 

  12. T.S. Ravi, D.M. Hwang, R., Ramesh, C. Siu Wai, L. Nazar, C.Y. Chen, A. Inam, and T. Venkatesan, Phys. Rev. B 42, 10141 (1990).

    Article  CAS  Google Scholar 

  13. L.A. Tietz and C.B. Carter, Physica C 182, 4 (1991).

    Article  Google Scholar 

  14. M.V. Sidorov and S.R. Oktyabrsky, Phys. Status. Solidi (a) 126, 427 (1991).

    Article  CAS  Google Scholar 

  15. R.K. Singh, D. Bhattacharya, P. Tiwari, J. Narayan, and C.B. Lee, Appl. Phys. Lett. 60, 255 (1992).

    Article  CAS  Google Scholar 

  16. M.F. Chisholm and D.A. Smith, Phil. Mag. A 59, 181 (1989).

    Article  CAS  Google Scholar 

  17. J.W. Seo, B. Kabius, U. Daehne, A. Scholen, and K. Urban, Physica C 245, 1 (1995).

    Article  Google Scholar 

  18. M. Mironova, G. Du, I. Rusakova, and K. Salama, Physica C 271, 1 (1996).

    Article  Google Scholar 

  19. S. Oktyabrsky, R. Kalyanaraman, K. Jagannadham, and J. Narayan, Microscopy Microanalysis 4, Suppl. 2, 676 (1998).

    Article  Google Scholar 

  20. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  CAS  Google Scholar 

  21. J.P. Hirth and J. Lothe, Theory of Dislocations (Krieger Publishing Co., 1992), p. 732.

  22. D. Dimos, P. Chaudhari, J. Mannhart, and F.K. LeGoues, Phys. Rev. Lett. 61, 219 (1988).

    Article  CAS  Google Scholar 

  23. M.F. Chisholm and S.J. Pennycock, Nature 351, 47 (1991).

    Article  CAS  Google Scholar 

  24. G. Deutscher, Physica C 153, 15 (1988).

    Article  Google Scholar 

  25. K. Jagannadham and J. Narayan, Mater. Sci. Eng. B 8, 5 (1991).

    Article  Google Scholar 

  26. P.G. de Gennes, in Superconductivity of Metals and Alloys (W.A. Benjamin, Inc, New York, 1966).

  27. U. Koch, N. Lotter, J. Wittig, W. Assmus, B. Gegenheimer, and K. Winzer, Solid State Comm. 67, 959 (1988).

    Article  CAS  Google Scholar 

  28. A.D. Marwick, C.R. Guarnieri, and J.M. Manoyan, Appl. Phys. Lett. 53, 2713 (1988).

    Article  CAS  Google Scholar 

  29. B. Bucher, E. Kaldis, C. Krueger, and P. Wachter, Europhys. Lett. 34, 391 (1996).

    Article  CAS  Google Scholar 

  30. M. Baran, L. Gladczuk, H. Szymczak, V.P. Dyakonov, V.I. Markovich, and I.M. Fita, Low Temp. Physics 22, 1360 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oktyabrsky, S., Kalyanaraman, R., Jagannadham, K. et al. Dislocation structure of low-angle grain boundaries in YBa2Cu3O7−δ/MgO films. Journal of Materials Research 14, 2764–2772 (1999). https://doi.org/10.1557/JMR.1999.0369

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0369

Navigation