Skip to main content
Log in

Hot Isostatic Pressing to Increase Thermal Conductivity of Si3N4 Ceramics

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly anisotropic Si3N4 ceramics were successfully fabricated by tape-casting of raw α–Si3N4 powders with β–Si3N4 single-crystal particles as seed particles and Y2O3 as an effective sintering aid, followed by hot isostatic pressing at a temperature of 2773 K for 2 h under a nitrogen gas pressure of 200 MPa. The microstructure consists of very large elongated grains (diameter ~10 μm; length of ~200 μm), highly oriented in the tape-casting direction. The thermal conductivity along this direction reaches 155 W m-1K-1 at room temperature, but varies significantly between room temperature and 1273 K. This thermal conductivity is closely related to (1) formation of extremely large elongated β–Si3N4 grains with a reduced amount of crystal defects due to the high-temperature firing and to (2) orientation of β–Si3N4 grains due to addition of seed particles and to tape-casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Trudeau and J.Y. Ying, Nanostruct. Mater. 7 (1, 2), 245–258 (1996).

  2. Y. Saito, K. Kawabata, and M. Okuda, J. Phys. Chem. 99, 16076–16079 (1995).

    Article  CAS  Google Scholar 

  3. M. Ohkohchi, X. Zhao, M. Wang, and Y. Ando, Fullerene Sci. Technol. 4 (5), 977– (1996).

  4. F. Ribot, C. Sanchez, and J. Livage, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), pp. 139–144.

    Google Scholar 

  5. G. L. Hubert-Pfalzgraf, O. Poncelet, and J.C. Daran, in Better Ceramics Through Chemistry IV, edited by B. J. J. Zelinski, C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), pp. 73–78.

    Google Scholar 

  6. T. Hours, P. Bergez, J. Charpin, and A. Larbot, Am. Ceram. Soc. Bull. 71 2, 200–203 (1992).

    CAS  Google Scholar 

  7. A. Celikkaya and M. Akinc, J. Coll. Interf. Sci. 122, 110–118 (1988).

    Article  Google Scholar 

  8. B. Aiken, W. P. Hsu, and E. Matijević, J. Am. Ceram. Soc. 71, 845–853 (1988).

    Article  CAS  Google Scholar 

  9. D. Sordelet and M. Akinc, J. Coll. Interf. Sci. 122, 47–59 (1988).

    Article  CAS  Google Scholar 

  10. A. L. Micheli, Ceramic Transactions, edited by G. L. Messing, E. R. Fuller, Jr., and H. Hausner (The American Ceramic Society, Westerville, OH, 1988), Vol. 1, Part A, pp. 102–109.

  11. P. H. McCluskey, G. S. Fischman, and R. L. Snyder, Proc. 2nd Int. Conf. on Ceramic Powder Processing Science, edited by H. Hausner, G. L. Messing, and S. Hirano, 111–119 (1989).

  12. B. Djuricić, D. Kolar, and M. Memić, J. Euro. Ceram. Soc. 9, 75–82 (1992).

    Article  Google Scholar 

  13. M. Kobayashi, J. Mater. Sci. Lett. 11 11, 767–768 (1992).

    Article  CAS  Google Scholar 

  14. Marcilly, P. Courty, and B. Delmon, J. Am. Ceram. Soc. 53 [1], 56–57 (1970).

  15. S. G. Baythoun and F. R. Sale, J. Mater. Sci. 17, 2757–2769 (1982).

    Article  CAS  Google Scholar 

  16. L.A. Chick, L. R. Pederson, G. D. Maupin, J.L. Bates, L. E. Thomas, and G.J. Exarhos, Mater. Lett. 10 (1, 2) 6–12 (1990).

  17. S. S. Manoharan and K. C. Patil, J. Am. Ceram. Soc. 75 4, 1012–1015 (1992).

    Article  CAS  Google Scholar 

  18. S. Roy, A. Das Sharma, S. N. Roy, and H.S. Maiti, J. Mater. Res. 8 11, 2761–2766 (1993).

    Article  CAS  Google Scholar 

  19. A. Chakraborty, P. S. Devi, S. Roy, and H. S. Maiti, J. Mater. Res. 9, 986–991 (1994).

    Article  CAS  Google Scholar 

  20. S. R. Jain, K.C. Adiga, and V. R. Pai Verneker, Combust. Flame 40, 71 (1981).

    Article  CAS  Google Scholar 

  21. J. S. Ogden and S. J. Williams, J. Chem. Soc. Dalton Trans., 456–462 (1981).

  22. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (Wiley-Interscience Publication, New York, 1986).

  23. Infrared spectra of a commercial grade hydrated Y2(CO3)3 was also considered for assigning those bands.

  24. J. R. Ferraro and A. Walker, J. Chem. Phys. 42 4, 1273–1285 (1965).

    Article  CAS  Google Scholar 

  25. A. Walker and J. R. Ferraro, J. Chem. Phys. 43 8, 2689–2692 (1965).

    Article  CAS  Google Scholar 

  26. R. E. Hester and K. Krishnan, J. Chem. Phys. 47 5, 1747–1755 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watari, K., Hirao, K., Brito, M.E. et al. Hot Isostatic Pressing to Increase Thermal Conductivity of Si3N4 Ceramics. Journal of Materials Research 14, 15 (1999). https://doi.org/10.1557/JMR.1999.0206

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0206

Navigation