Skip to main content
Log in

Room temperature reduction of scheelite (CaWO4)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A mixture of scheelite and magnesium has been mechanically milled together for 100 h, either with graphite or in a nitrogen atmosphere, with the intention of forming tungsten carbide or nitride. The resultant powders were examined by thermal analysis, isothermal annealing, and x-ray diffraction to determine the effect of milling on the reduction of scheelite. With graphite, nanocrystallite W2C was the exclusive tungsten product; WC was not detected even after annealing at 1000 °C. No nitride formed in the system milled with nitrogen; however, 10 nm crystallites of elemental tungsten were formed. The unwanted phases, MgO and CaO, were readily removed by leaching in acid, leaving a fine powder composed of impact welded aggregates of either carbide or 99% pure tungsten metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Stephen, Tungsten (Plenum Press, New York, 1979), pp. 215–219.

    Google Scholar 

  2. P. Matteazzi and G. Le Caër, J. Am. Ceram. Soc. 74, 1382–1385 (1991).

  3. G.M. Wang, P. Millet, A. Calka, and S. J. Campbell, Mater. Sci. Forum 179–181, 183–188 (1995).

    Article  Google Scholar 

  4. M. Xueming and J.I. Gang, J. Alloys Comp. 245, L30–L32 (1996).

    Article  CAS  Google Scholar 

  5. X. M. Ma, Z. Ling, J. Gang, and Y. D. Dong, J. Mater. Sci. Lett. 16, 968–970 (1997).

    Article  CAS  Google Scholar 

  6. G.M. Wang, S.J. Campbell, A. Calka and W.A. Kaczmarek, J. Mater. Sci. 32, 1461–1467 (1997).

    CAS  Google Scholar 

  7. Atlas of Microstructures of Industrial Alloys (American Society of Metals, Metals Park, OH 1972), pp. 127–128.

  8. B. S. Terry and D. C. Azubike, Trans. Inst. Min. Metall. C 99, 175–182 (1990).

    Google Scholar 

  9. B. S. Terry, D. C. Azubike, and A. Chrysanthou, J. Mater. Sci. 29, 4300–4305 (1994).

    Article  CAS  Google Scholar 

  10. R. F. Johnston and H. T. Hguyen, Min. Eng. 9, 765–773 (1996).

    Article  CAS  Google Scholar 

  11. N. J. Welham, Mater. Sci. Eng. A, 248, 230–237 (1998).

    Article  Google Scholar 

  12. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985), p. 3258.

    Google Scholar 

  13. W. Ensinger and M. Kiuchi, Surf. Coat. Technol. 84, 425–428 (1996).

    Article  CAS  Google Scholar 

  14. S. Veprek, M. Haussmann, and S. Reiprich, J. Vac. Sci. Technol. A–Vac. Surf. Films 14, 46–51 (1996).

    Article  CAS  Google Scholar 

  15. G. V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds (Plenum Press, New York 1980), p. 555.

  16. P. Schwartzkopf and R. Kieffer, Refractory Hard Metals: Borides, Carbides, Nitrides and Silicides (Macmillan, New York, 1953), p. 447.

    Google Scholar 

  17. L Palmetshofer and P. Rodhammer, Nucl. Instrum. Methods in Phys. Res. B 1, 340–343 (1993).

  18. T. Hurkmans, T. Trinh, D. B. Lewis, J. S. Brooks, and W. D. Munz, Surf. Coat. Technol. 76, 159–166 (1995).

    Article  Google Scholar 

  19. M. Nagai and K. Kishida, Appl. Surf. Sci. 70-1, 759–762 (1993).

    Article  Google Scholar 

  20. H.T. Chiu and S. H. Chuang, J. Mater. Res. 8, 1353–1360 (1993).

    Article  CAS  Google Scholar 

  21. Y.T. Kim, C. W. Lee, and S. K. Min, Jpn. J. Appl. Phys. Part 1 32, 6126–6131 (1993).

    Article  CAS  Google Scholar 

  22. C.W. Lee, Y. T. Kim, and S. K, Min, Appl. Phys. Lett. 62, 3312–3314 (1993).

    Article  CAS  Google Scholar 

  23. I. P. Parkin and A. T. Rowley, J. Mater. Chem. 5, 909–912 (1995).

    Article  CAS  Google Scholar 

  24. D.V. Baxter, M. H. Chisholm, V. F. Distasi, and S. T. Haubrich, Chem. Mater. 7, 84–92 (1995).

    Article  CAS  Google Scholar 

  25. X.Z. Chen, J.L. Dye, H. A. Eick, S. H. Elder, and K. L. Tsai, Chem. Mater. 9, 1172–1176 (1997).

    Article  CAS  Google Scholar 

  26. A. Calka and J.I. Nikolov, Mater. Sci. Forum 179–181, 333–338 (1995).

    Article  Google Scholar 

  27. A. Calka, J. I. Nikolov, Z. L. Li, and J.S. Williams, Mater. Sci. Forum, 179–181, 295–300 (1995).

    Article  Google Scholar 

  28. A. Kerr, N. J. Welham, and P. E. Willis, Nanostruct. Mater. (1998, in press).

  29. N. J. Welham, A. Kerr, and P. E. Willis, J. Am. Ceram. Soc. (1998, in press).

  30. P. E. Willis, N. J. Welham, and A. J. Kerr, J. Euro. Ceram. Soc. 18, 701–708 (1998).

    Article  CAS  Google Scholar 

  31. A. Roine, HSC Chemistry for Windows; Outokumpu Research Oy: Pori, 1994.

  32. A. J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985), p. 834.

    Google Scholar 

  33. A. Calka and A. P. Radlinski, Mater. Sci. Eng. A134, 1350–1353 (1991).

    Article  CAS  Google Scholar 

  34. B. E. Warren, X-Ray Diffraction (Dover, New York, 1990), pp. 251–314.

    Google Scholar 

  35. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures (John Wiley, New York, 1954), p. 716.

    Google Scholar 

  36. E.K. Storms, The Refractory Carbides (Academic Press, New York, 1967), pp. 1–17.

    Google Scholar 

  37. C.C. Koch, Nanostruct. Mater. 9, 13–22 (1997).

    Article  CAS  Google Scholar 

  38. N.J. Welham, Trans. Inst. Min. Metall. C 106, 141–144 (1997).

    Google Scholar 

  39. N.J. Welham and D. J. Llewellyn, Min. Eng. 11, 827–841 (1998).

    Article  CAS  Google Scholar 

  40. N.J. Welham, Metall. Mater. Trans. B 29, 603–610 (1998).

    Article  Google Scholar 

  41. G.M. Wang, S.J. Campbell, A. Calka, and W.A. Kaczmarek, Nanostruct. Mater. 6, 389–392 (1995).

    Article  CAS  Google Scholar 

  42. S.J. Campbell, G.M. Wang, A. Calka, and W.A. Kaczmarek, Mater. Sci. Eng. A 226, 75–79 (1997).

    Article  Google Scholar 

  43. N.J. Welham and J. S. Williams, Carbon, 36, 1309–1315 (1998).

    Article  CAS  Google Scholar 

  44. N.J. Welham, J. Mater. Sci. (1998, in press).

  45. L.M. Di, A. Calka, Z. L. Li, and J. S. Williams, J. Appl. Phys. 78, 4118–4122 (1995).

    Article  CAS  Google Scholar 

  46. D.R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1992), p. 5.92.

  47. J. S. Williams, personal communication, 1997.

  48. K. Tkacova, Mechanical Activation of Minerals (Elsevier, London, 1989), p. 179.

    Google Scholar 

  49. D. Maurice and T. H. Courtney, Metall. Mater. Trans. A 27, 1981–1986 (1996).

    Article  Google Scholar 

  50. J. Ding, T. Tsuzuki, P. G. McCormick, and R. Street, J. Magn. Magn. Mater. 162, 271–276 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welham, N.J. Room temperature reduction of scheelite (CaWO4). Journal of Materials Research 14, 619–627 (1999). https://doi.org/10.1557/JMR.1999.0088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0088

Navigation