Skip to main content
Log in

Preparation of microcrystalline diamond in a low pressure inductively coupled plasma

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A 13.56 MHz low pressure inductively coupled plasma (ICP) has been applied to prepare diamond films. The Faraday shield drastically suppressed the electrostatic coupling, which frequently causes contamination due to the etching of the quartz tube. The characterizations of the obtained deposits by scanning electron microscopy (SEM), transmission electron diffraction (TED), and reflection high energy electron diffraction (RHEED) revealed that the deposits are composed of microcrystalline diamond and disordered microcrystalline graphite. The CO additive to a CH4/H2 plasma brought about the morphological change from a scale-like deposit to a particle one. Besides, the number of encountered particles was increased with an increase of CO additive. The TED and RHEED observations showed that non-diamond carbon was effectively removed with an increase of CO additive. These results indicate that oxygen-contained radicals produced by the addition of CO play an effective role in the removal of non-diamond carbon in the diamond growth conditions and that the CO additive makes the supersaturation degree of carbon large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, New York, 1994).

    Google Scholar 

  2. J. Hopwood, Plasma Sources Sci. Technol. 1, 109 (1992).

    Article  CAS  Google Scholar 

  3. J. Amorim, H. S. Maciel, and J. P. Sudano, J. Vac. Sci. Technol. B9, 362 (1991).

    Article  Google Scholar 

  4. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642 (1983).

    Article  CAS  Google Scholar 

  5. J. Wei, H. Kawarada, J. Suzuki, and A. Hiraki, J. Cryst. Growth 99, 1201 (1990).

    Article  CAS  Google Scholar 

  6. S. P. Bozeman, D. A. Tucker, B. R. Stoner, J. T. Glass, and W. M. Hooke, Appl. Phys. Lett. 66, 3579 (1995).

    Article  CAS  Google Scholar 

  7. K. Teii and T. Yoshida, Proc. 13th Int. Symp. Plasma Chem., Beijing, 1997, p. 1212.

  8. H. Noda, H. Nagai, M. Hiramatsu, M. Nawata, M. Hori, and T. Goto, Proc. 50th Gaseous Electronics Conference, Madison, 1997, p. 1753.

  9. Y. Hirose and Y. Terasawa, Jpn. J. Appl. Phys. 25, L519 (1986).

    Article  CAS  Google Scholar 

  10. T. Kawato and K. Kondo, Jpn. J. Appl. Phys. 26, 1429 (1987).

    Article  CAS  Google Scholar 

  11. J. A. Mucha, D. L. Flamm, and D. E. Ibbotson, J. Appl. Phys. 65, 3448 (1989).

    Article  CAS  Google Scholar 

  12. M. Frenklach and H. Wang, Phys. Rev. B43, 1520 (1991).

    Article  Google Scholar 

  13. D. E. Rosner and J. P. Strakey, J. Phys. Chem. 77, 690 (1973).

    Article  CAS  Google Scholar 

  14. S. Komatsu, Y. Moriyoshi, M. Kasamatsu, and K. Yamada, J. Appl. Phys. 70, 7078 (1991).

    Article  CAS  Google Scholar 

  15. Y. Hikosaka, M. Nakamura, and H. Sugai, Jpn. J. Appl. Phys. 33, 2157 (1994).

    Article  CAS  Google Scholar 

  16. K. Okada, S. Komatsu, T. Ishigaki, and S. Matsumoto, in Chemical Vapor Deposition of Refractory Metals and Ceramics III, edited by B.M. Gallois, W. Y. Lee, and M.A. Pickering (Mater. Res. Soc. Symp. Proc. 363, Pittsburgh, PA, 1995), p. 157.

  17. K. Okada, S. Komatsu, T. Ishigaki, and S. Matsumoto, Proc. 12th Symp. Plasma Processing, Sendai, 1995, p. 509.

  18. K. Okada, S. Komatsu, T. Ishigaki, and S. Matsumoto, Proc. 12th Int. Symp. Plasma Chem., Minnesota, 1995, p. 2261.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, K., Komatsu, S. & Matsumoto, S. Preparation of microcrystalline diamond in a low pressure inductively coupled plasma. Journal of Materials Research 14, 578–583 (1999). https://doi.org/10.1557/JMR.1999.0082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0082

Navigation