Skip to main content
Log in

Silicon and zinc telluride nanoparticles synthesized by low energy density pulsed laser ablation into ambient gases

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The size distributions of Si and ZnTe nanoparticles produced by low energy density ArF (193 nm) pulsed laser ablation into ambient gases were measured as a function of the gas pressure, P, and target-substrate separation, Dts. For both Si and ZnTe, the largest nanoparticles were found closest to the ablation target, and the mean nanoparticle size decreased with increasing Dts. For Si ablation into He, the mean nanoparticle diameter did not increase monotonically with gas pressure but reached a maximum near P = 6 Torr. High resolution Z-contrast transmission electron microscopy and energy loss spectroscopy revealed that ZnTe nanoparticles consist of a crystalline core surrounded by an amorphous ZnO shell; growth defects and surface steps are clearly visible in the crystalline core. A pronounced narrowing of the ZnTe nanocrystal size distribution with increasing Dts also was found. The results demonstrate that the size of laser-ablated nanoparticles can be controlled by varying the molecular weight and pressure of an ambient gas and that nanometer-scale particles can be synthesized. Larger aggregates of both ZnTe and Si having a “flakelike” or “weblike” structure were formed at the higher ambient gas pressures; for ZnTe these appear to be open agglomerates of much smaller (∼10 nm) particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, and C. M. Rouleau, Science 273, 898 (1996).

    Article  CAS  Google Scholar 

  2. D. E. Powers, S. G. Hansen, M. E. Geusic, A. C. Pulu, J. B. Hopkins, T. G. Dietz, M.A. Duncan, P. R. R. Langridge-Smith, and R. E. Smalley, J. Phys. Chem. 86, 2556 (1982).

    CAS  Google Scholar 

  3. C.M. Rouleau, D.H. Lowndes, J.W. McCamy, J.D. Budai, D.B. Poker, D. B. Geohegan, A. A. Puretzky, and S. Zhu, Appl. Phys. Lett. 67, 2545 (1995).

    Article  CAS  Google Scholar 

  4. D. H. Lowndes, C. M. Rouleau, D. B. Geohegan, A. A. Puretzky, M. A. Strauss, A. J. Pedraza, J. W. Park, J. D. Budai, and D. B. Poker, in Advanced Laser Processing of Materials—Fundamentals and Applications, edited by R. Singh, D. Norton, L. Laude, J. Narayan, and J. Cheung (Mater. Res. Soc. Symp. Proc. 397, Pittsburgh, PA, 1996), p. 107.

  5. C. M. Rouleau, D. H. Lowndes, M. A. Strauss, S. Cao, A. J. Pedraza, D. B. Geohegan, A. A. Puretzky, and L. F. Allard, in Advanced Laser Processing of Materials—Fundamentals and Applications, edited by R. Singh, D. Norton, L. Laude, J. Narayan, and J. Cheung (Mater. Res. Soc. Symp. Proc. 397, Pittsburgh, PA, 1996), p. 119.

  6. W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, and J. F. Garvey, Appl. Phys. Lett. 67, 1698 (1995).

  7. T. Yoshida, S. Takeyama, Y. Yamada, and K. Mutoh, Appl. Phys. Lett. 68, 1772 (1996).

    Article  CAS  Google Scholar 

  8. Y. Yamada, T. Orii, I. Umezu, S. Takeyama, and T. Yoshida, Jpn. J. Appl. Phys. 35, 1361 (1996).

    Article  CAS  Google Scholar 

  9. T. Yoshida, Y. Yamada, and T. Orii, in Technical Digest of the Inter. Electron Devices Mtg., San Francisco, CA, Dec. 8–11, 1996, IEEE, p. 417.

  10. T. Makimura, Y. Kunii, and K. Murakami, Jpn. J. Appl. Phys. 35, 4780 (1996).

    Article  CAS  Google Scholar 

  11. T. Makimura, T. Sakuramoto, and K. Murakami, Jpn. J. Appl. Phys. 35, L735 (1996).

    Article  CAS  Google Scholar 

  12. T. Makimura, Y. Kunii, N. Ono, and K. Murakami, Jpn. J. Appl. Phys. 35, L1703 (1996).

    Article  CAS  Google Scholar 

  13. T. Yoshida, personal communication. In the deposition experiments the laser pulse energy was 60 mJ, measured before the quartz entrance window. Assuming a transmission factor of 0.91 and the 1 × 3 mm area of Refs. 7 and 8, this corresponds to Ed ~ 1.8 J/cm2.

  14. A. Matsunawa, S. Katayama, A. Susuki, and T. Ariyasu, Trans. Jpn. Welding Res. Institute 15, 233 (1986).

    CAS  Google Scholar 

  15. 0.003-inch × 3-inch #3 edge 1095 steel ribbon, tempered, polished, and blued; Amstek Metal, Joliet, IL.

  16. D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992).

    Article  CAS  Google Scholar 

  17. G. Duscher, D. B. Geohegan, A. A. Puretzky, and S.J. Pennycook, personal communication.

  18. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

  19. L.E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  CAS  Google Scholar 

  20. L. Brus, J. Phys. Chem. 90, 2555 (1986).

    Article  CAS  Google Scholar 

  21. R.P. Camata, H. A. Atwater, K. J. Vahala, and R. C. Flagan, Appl. Phys. Lett. 68, 3162 (1996).

    Article  CAS  Google Scholar 

  22. T. Ifuku, M. Otobe, A. Itoh, and S. Oda, Jpn. J. Appl. Phys. 36, 4031 (1997).

    Article  CAS  Google Scholar 

  23. R.F. Wood, J. N. Leboeuf, K. R. Chen, D.B. Geohegan, and A.A. Puretzky, Fourth Int. Conf. on Laser Ablation (COLA’97), Monterey, CA, July 21–25, 1997; Surf. Sci. in press.

  24. Yu. P. Raizer, Sov. Phys. JETP 37, 1229 (1960).

  25. D.B. Geohegan, personal communication and unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowndes, D.H., Rouleau, C.M., Thundat, T.G. et al. Silicon and zinc telluride nanoparticles synthesized by low energy density pulsed laser ablation into ambient gases. Journal of Materials Research 14, 359–370 (1999). https://doi.org/10.1557/JMR.1999.0053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0053

Navigation