Skip to main content
Log in

Stability of fullerenes under hydrothermal conditions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stability of fullerenes C60 under hydrothermal conditions (200–800 °C, 100 MPa, 20 min–168 h) has been investigated. The reaction products have been characterized by Raman spectroscopy and x-ray diffraction. The fullerenes were stable up to 500 °C, but they decomposed immediately at 800 ±C into amorphous carbon. In the transition region between 600 and 750 °C, longer times and higher temperatures of the hydrothermal treatment favored decomposition of C60 with the formation of amorphous carbon. Addition of nickel to the C60–H2OO system neither suppressed hydrothermal decomposition of C60 nor induced formation of other phases, except of the amorphous carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. K. Livingston, Science 268, 1637 (1995).

    Article  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).

    Google Scholar 

  4. H. Richter, S. C. Emberson, and A. Fonseca, Revue De L Institut Francais Du Petrole 49, 413 (1994).

    Article  CAS  Google Scholar 

  5. M. S. Dresselhaus and G. Dresselhaus, Ann. Rev. Mater. Sci. 25, 487 (1995).

    Article  CAS  Google Scholar 

  6. H. Singh and M. Srivastava, Energy Sources 17, 615 (1995).

    Article  CAS  Google Scholar 

  7. C. M. Lieber and C. C. Chen, Solid State Physics 48, 109 (1994).

    Article  CAS  Google Scholar 

  8. T.W. Ebbesen, Ann. Rev. Mater. Sci. 24, 235 (1994).

    Article  CAS  Google Scholar 

  9. C. N. R. Rao, R. Seshadri, A. Govindaraj, and R. Sen, Mater. Sci. Eng. Rep. 15, 209 (1995).

    Article  Google Scholar 

  10. R. Tenne, Adv. Mater. 7, 965 (1995).

    Article  CAS  Google Scholar 

  11. H. Takahashi, B. Jeyadevan, K. Tohji, I. Matsuoka, A. Kasuya, Y. Nishina, and T. Nirasawa, Proc. Electrochem. Soc. 96-10, 72 (1996).

    CAS  Google Scholar 

  12. H. Takahashi, T. Goto, Y. Akiyama, B. Jeyadevan, K. Tohji, and I. Matsuoka, Mater. Sci. Eng. A 217/218, 42 (1996).

    Article  Google Scholar 

  13. K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, T. Ohsuna, S. Ito, A. Kasuya, K. Hiraga, and Y. Nishina, Proc. Electrochem. Soc. 96-10, 84 (1996).

    CAS  Google Scholar 

  14. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science 280, 1253 (1998).

    CAS  Google Scholar 

  15. A. Szucs, A. Loix, J. B. Nagy, and L. Lamberts, J. Electroanal. Chem. 397, 191 (1995).

    Article  Google Scholar 

  16. J. J. Davis, H. A. O. Hill, A. Kurz, A. D. Leighton, and A. Y. Safronov, J. Electroanal. Chem. 429, 7 (1997).

    Article  CAS  Google Scholar 

  17. D. M. Guldi, J. Phys. Chem. A 101, 3895 (1997).

    Article  CAS  Google Scholar 

  18. M. Yanagida, T. Kuri, and T. Kajiyama, Chem. Lett., No. 9, 911 (1997).

  19. Q. Q. Li, S. H. Fan, W. Q. Han, C. H. Sun, and W.J. Liang, Jpn. J. Appl. Phys., Part 2, Letters 36, L501 (1997).

    Article  CAS  Google Scholar 

  20. V. V. Chesnokov, V. I. Zaikovskii, R. A. Buyanov, V. V. Molchanov, and L. M. Plyasova, Kinetics and Catalysis 35, 130 (1994).

    Google Scholar 

  21. S. Seraphin, D. Zhou, J. Jiao, M. A. Minke, S. Wang, T. Yadav, and J. C. Withers, Chem. Phys. Lett. 217, 191 (1994).

    Article  CAS  Google Scholar 

  22. D. Ravichandran and R. Roy, Mater. Res. Bull. 31, 1075 (1996).

    Article  CAS  Google Scholar 

  23. X. Z. Zhao, R. Roy, K. A. Cherian, and A. Badzian, Nature (London) 385, 513 (1997).

    Article  CAS  Google Scholar 

  24. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J. Raman Spectrosc. 27, 351 (1996).

    Article  CAS  Google Scholar 

  25. Y. G. Gogotsi and M. Yoshimura, Nature (London) 367, 628 (1994).

    Article  CAS  Google Scholar 

  26. Y.G. Gogotsi and K. G. Nickel, Ceram. Eng. Sci. Proc. 18, 747 (1997).

    Article  CAS  Google Scholar 

  27. P.R. Buseck, S. J. Tsipursky, and R. Hettich, Science 257, 215 (1992).

    Article  CAS  Google Scholar 

  28. P.H. Fang, X. Zhou, R. Tao, Q. Wang, C. Mu, and X. Wu, Innov. Mater. Res. 1, 129 (1996).

    CAS  Google Scholar 

  29. Seafloor Hydrothermal Systems. Physical, Chemical, Biological, and Geological Interactions, edited by S.E. Humphris, R. A. Ziarenberg, L. S. Mullineaux, and R. E. Thomson (American Geophysical Union, 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchanek, W.L., Yoshimura, M. & Gogotsi, Y.G. Stability of fullerenes under hydrothermal conditions. Journal of Materials Research 14, 323–326 (1999). https://doi.org/10.1557/JMR.1999.0046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0046

Navigation