Skip to main content
Log in

Metallothermic reduction as an electronically mediated reaction

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The commonly held view that metallothermic reduction is strictly a chemical reaction and that the process is rate limited by mass transfer has been found to be incomplete. In a study of the production of tantalum powder by the reaction of K2TaF7 with sodium, it has been shown that there are two dominant kinetic pathways, both involving electron transfer. Furthermore, the overall rate of reaction is limited by electron transport between the reactants. This indicates that metallothermic reduction is an “electronically mediated reaction” (EMR). Experiments found that the location of the tantalum deposit and its morphology are governed by the reaction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Gupta, Int. Met. Rev. 29, 405 (1984).

    Article  CAS  Google Scholar 

  2. S. C. Jain, D. K. Bose, and C. K. Gupta, Trans. Indian Inst. Met. 24, 1 (1971).

    CAS  Google Scholar 

  3. V. I. Konstantinov, E. G. Polyakov, and P. T. Stangrit, Electrochim. Acta 23, 713 (1978).

    Article  CAS  Google Scholar 

  4. P. Taxil and J. Mahenc, J. Appl. Electrochem. 17, 261 (1987).

    Article  CAS  Google Scholar 

  5. W. Kock and P. Paschen, Metall. 44, 928 (1990).

    Google Scholar 

  6. A. Espinola, A. J. B. Dutra, and F. T. Silva, Anal. Chim. Acta 251, 53 (1991).

    Article  CAS  Google Scholar 

  7. L.P. Polyakova, E.G. Polyakov, A.I. Soronkin, and P. T. Stangrit, J. Appl. Electrochem. 22, 628 (1992).

    Article  CAS  Google Scholar 

  8. F. Lantelme, A. Barhoun, G. Li, and J-P. Besse, J. Electrochem. Soc. 139, 1249 (1992).

    Article  CAS  Google Scholar 

  9. G. A. Voyiatzis, E. A. Pavlatou, G. N. Papatheodorou, M. Bachtler, and W. Freyland, in Molten Salt and Technology 1993, edited by M-L. Saboungi and H. Kojima (The Electrochem. Soc. Symp. PV 93-9, Pennington, NJ, 1993), p. 252.

  10. G-S. Chen, A. G. Edwards, and G. Mamantov, J. Electrochem. Soc. 140, 2439 (1993).

    Article  CAS  Google Scholar 

  11. M. Bachtler, J. Rochengerger, W. Freyland, C. Rosenkilde, and T. Østvold, J. Phys. Chem. 98, 742 (1994).

    Article  CAS  Google Scholar 

  12. L.K. Marinina, E.G. Rakov, B.V. Gromkov, and O. V. Markina, Zh. Fiz. Khim. 45, 1592 (1971).

    CAS  Google Scholar 

  13. V. M. Amosov, Izv. Vysshikh Ucheb. Zavdenii, Tsvetn. Met. 7 (3), 123 (1964).

    CAS  Google Scholar 

  14. W.J. Kroll, Trans. Electrochem. Soc. 78, 35 (1940).

    Article  Google Scholar 

  15. M. Krumpelt, J. Fischer, and I. Johnson, J. Phys. Chem. 72, 506 (1968).

    Article  CAS  Google Scholar 

  16. W.W. Warren, Jr., in Molten Salt Chemistry, An Introduction and Selected Applications, edited by G. Mamantov and R. Marassi (D. Reidel Publishing Co., Boston, MA, 1986), p. 237.

    Google Scholar 

  17. M. A. Hunter, J. Am. Chem. Soc. 32, 330 (1910).

    Article  CAS  Google Scholar 

  18. M. A. Bredig, in Molten Salt Chemistry, edited by M. Blander (Interscience, New York, 1964), p. 367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabe, T.H., Sadoway, D.R. Metallothermic reduction as an electronically mediated reaction. Journal of Materials Research 13, 3372–3377 (1998). https://doi.org/10.1557/JMR.1998.0459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0459

Navigation