Skip to main content
Log in

On the fractal nature of crack branching in MgF2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nineteen disks of IR window grade, hot pressed magnesium fluoride (˜0% porosity, grain size ˜1 μm) previously loaded in ring-on-ring flexure tests were used to analyze the crack branching patterns. Fractal geometry was used to determine the crack branching fractal dimension which was named the crack branching coefficient or CBC. The failure stress was proportional to the CBC and the number of pieces generated during the fracture. Thus, the number of pieces was proportional to the crack branching coefficient. The crack branching coefficient is distinct from the fractal dimension obtained from the onset of mist and hackle on the fracture surface. The fractal dimension of the fracture surface is, in most cases for brittle materials, a constant and related to the crack tip stress field. The crack branching fractal dimension is a function of the stress at fracture and the far-field stress distribution, or in other words, related to both the type and magnitude of loading. The findings in this work have strong implications for many commercial processes such as comminution, attrition, grinding, and basic studies in crack branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bar-on, in Engineered Materials Handbook (Ceramics and Glasses) (ASM INTERNATIONAL, The Materials Information Society, 1991), pp. 645–651.

  2. G.R. Irwin, ASME Paper No. 62-MET-15, 1–13 (1962).

  3. A. A. Griffith, Philos. Trans. R. Soc. London A221, 163–197 (1921).

    Article  Google Scholar 

  4. S.C. Langford and J. T. Dickinson, in ACS Symposium Series: Spectroscopic Characterization of Minerals and Their Surfaces, edited by L.M. Coyne et al. (1990), Vol. 415, pp. 224–244.

  5. K. Ravi-Chandar and W.G. Knauss, Int. J. Fracture 28, 65–80 (1984).

    Article  Google Scholar 

  6. J. Cuneo, Master’s Thesis, University of Florida (1996).

  7. F.W. Preston, J. Soc. Glass Technol. 10, 234–269 (1926).

    CAS  Google Scholar 

  8. R.W. Rice, in Fractography of Ceramic and Metal Failures, ASTM STP 827, edited by J. J. Mecholsky, Jr. and S. R. Powell, Jr. (American Soc. for Testing and Materials, Philadelphia, PA, 1984), pp. 1–100.

    Google Scholar 

  9. R.W. Rice, in Surfaces and Interfaces of Glass and Ceramics, edited by V. Frechette, W. LaCourse, and V. Burdick (Plenum Press, New York, 1974), pp. 439–472.

    Chapter  Google Scholar 

  10. J. J. Mecholsky, Jr., T. J. Mackin, and D. E. Passoja, in Adv. in Ceramics 22: Fractography of Ceramics and Glasses, edited by Varner and V. Frechette (The American Ceramic Soc., Westerville, OH, 1988).

    Google Scholar 

  11. J. J. Mecholsky, Jr. and S. W. Freiman, J. Am. Ceram. Soc. 74 (12), 3136–3138 (1991).

    Article  CAS  Google Scholar 

  12. H.P. Rossmanith, University of Maryland Report [NSF Grant #DAR-77-05171] (1980).

  13. V.D. Frechette, Fractography of Glass and Ceramics (The American Ceramic Society, Westerville, OH, 1990).

    Google Scholar 

  14. R.W. Rice, in Adv. in Ceramics 22, in Fractography of Glasses and Ceramics, edited by Varner and V. Frechette (The American Ceramic Society, Inc., Westerville, OH, 1988), pp. 3–56.

    Google Scholar 

  15. E.K. Beauchamp, Sandia National Lab. Research Report SC-RR-70-766, Albuquerque, NM (1971).

  16. S.W. Freiman, J. J. Mecholsky, Jr., and P.F. Becher, in Ceram. Trans. 17, op Cit., 55–78 (1991).

    CAS  Google Scholar 

  17. P.N. Randall, in ASTM STP 410 (1967), pp. 88–126.

    Google Scholar 

  18. J. J. Mecholsky, Jr., in Ceram. Trans., edited by V. Frechette and Varner (The American Ceram. Society, Westerville, OH, 1991), Vol. 17.

    Google Scholar 

  19. ASTM Annual Book of Standards, E616, p. 674, The American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103 (1984).

  20. H.P. Kirchner and J. C. Conway, Jr., in Fractography of Glass and Ceramics, Advances in Ceramics, Vol. 22 (The American Ceramics Society, Westerville, OH, 1988), pp. 187–213.

    Google Scholar 

  21. J.C. Newman and I.S. Raju, NASA TP 1578 (1979).

  22. D. Broek, Elementary Engineering Fracture Mechanics (Sijthoff and Nordhoff, The Netherlands, 1978).

    Google Scholar 

  23. Y.L. Tsai and J. J. Mecholsky, Int. J. Fracture 57, 167–182 (1992).

    Article  Google Scholar 

  24. B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman Co., New York, 1982).

    Google Scholar 

  25. J. Kertesz, in Disorder and Fracture, edited by J. C. Charmet, S. Roux, and E. Guyon (Plenum Press, New York, 1990), pp. 51–62.

    Chapter  Google Scholar 

  26. N. Hecker, D. G. Grier, and L. M. Sander, in Fractal Aspects of Disordered Systems, edited by D.A. Weltz, L. M. Sander, and B. B. Mandelbrot (Mater. Res. Soc. Symp. Proc. EA-17, Pittsburgh, PA, 1988), pp. 17–19.

  27. X. L. Wu, S. M. Troin, E. Herbolzheimer, and S. A. Safran, in Fractal Aspects of Disordered Systems, edited by D.A. Weitz, L.M. Sander, and B. B. Mandelbrot (Mater. Res. Soc. Symp. Proc. EA-17, Pittsburgh, PA, 1988), pp. 71–73.

  28. H. J. Herrmann and L. de Arcangelis, in Fractal Aspects of Disordered Systems, edited by D. A. Weitz, L. M. Sander, and B. B. Mandelbrot (Mater. Res. Soc. Symp. Proc. EA-17, Pittsburgh, PA, 1988), pp. 149–163.

  29. Xie Heping, Int. J. Fracture 41 (4) 267–274 (1989).

    Article  Google Scholar 

  30. J. Arrault and B. Pouligny, J. Physics I (France) 6, 431–441 (1996).

    Article  Google Scholar 

  31. T. Sakai, M. Ramulu, A. Ghoshand, and R. C. Bradt, in Ceram. Trans. 17 (1991).

  32. J. J. Mecholsky and J. R. Plaia, J. Non. Cryst. Solids 146, 249–255 (1992).

    Article  CAS  Google Scholar 

  33. B. B. Mandelbrot, D. E. Passoja, and J. Paullay, Nature (London) 308, 721–722 (1984).

    Article  CAS  Google Scholar 

  34. Y. Fahmy, J.C. Russ, and C. C. Koch, J. Mater. Sci. 6, 1856–1861 (1991).

    CAS  Google Scholar 

  35. J. J. Mecholsky and T. J. Mackin, J. Mater. Sci. Lett. 7, 1145–1147 (1988).

    Article  CAS  Google Scholar 

  36. J. Y. Thompson, J. J. Mecholsky, and K. J. Anusavice, JACerS 78, 3045–3049 (1995).

    CAS  Google Scholar 

  37. Y.L. Tsai and J. J. Mecholsky, Jr., J. Mater. Res. 6, 1248–1263 (1991).

    Article  CAS  Google Scholar 

  38. C.Y. Poon, R. S. Sayles, and T. A. Jones, J. Phys. D: Appl. Phys. 25, 1269–1275 (1992).

    Article  Google Scholar 

  39. E. Bouchaud, G. Lapasset, J. Planès, and S. Navéos, Phys. Rev. B. 48, 2917 (1993).

    Article  CAS  Google Scholar 

  40. J. C. Conway and H. P. Kirchner, J. Am. Ceram. Soc. 69 (8), 603–607 (1986).

    Article  CAS  Google Scholar 

  41. S. Chandresekar and M. Chaudhri, ACerS Bull. 76 (4), 249 (1997).

    Google Scholar 

  42. M.K. Hassan and G. J. Rodgers, Phys. Rev. Lett. A 208, 95–98 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mecholsky, J.J., Linhart, R., Kwitkin, B.D. et al. On the fractal nature of crack branching in MgF2. Journal of Materials Research 13, 3153–3159 (1998). https://doi.org/10.1557/JMR.1998.0429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0429

Navigation