Skip to main content
Log in

Crystalline silicon thin films: A promising approach for photovoltaics?

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper we review the achievements in the field of silicon crystalline thin film solar cells and correlate these with the different types of growth techniques and substrates. As a starting point we discuss the characteristics of photovoltaic devices based on the use of highly doped monocrystalline substrates as mechanical carriers for the thin films. These films are epitaxially deposited from the gas (CVD) or liquid phase (LPE). The comparison of both techniques is extended to growth on defective silicon substrates, i.e., multicrystalline wafers or silicon ribbons. The intrinsic grain boundary recombination activity in the thin films is assessed as a function of the deposition technique. Bulk passivation by hydrogenation considerably improves the recombination properties. The optimization of the hydrogen passivation conditions is looked at in conjunction with the used surface passivation process. This review is completed with the approaches to realize thin film cells on nonsilicon substrates, including recrystallization in solid and liquid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wolf, 14th IEEE Photovoltaic Specialists Conf. (1980), p. 80.

  2. A. Goetzberger; J. Knobloch, and B. Voss, Technical Digest Int. PVSEC-1, Kobe, Japan (1984), p. 517.

  3. IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994).

  4. 13th European Photovoltaic Solar Energy, Nice, France, October 1995.

  5. A. W. Blakers, J. H. Werner, E. Bauser, and H. J. Queisser, Appl. Phys. Lett. 60, 2752 (1992).

    Article  CAS  Google Scholar 

  6. J. H. Werner, J. K. Arch, R. Brendel, G. Langguth, M. Konuma, E. Bauser, G. Wagner, B. Steiner, and W. Appel, 12th European Photovoltaic Solar Energy Conf. (1994), p. 1823.

  7. T. F. Ciszek, T. H. Wang, X. Wu, R. W. Burrows, J. Allman, C. R. Schwerdtfeger, and T. Bekkedahl, 23rd IEEE Conference Photovoltaic Specialists Conf. (1993), p. 65.

  8. R. V. D’Aiello, P. H. Robinson, and H. Kressel, Appl. Phys. Lett. 28, 231 (1976).

    Article  Google Scholar 

  9. M. Rodot, M. Barbe, J. E. Bouree, J. E. Boree Perraki, G. Revel, J. L. Pastol, R. Metens, M. Caymax, and M. Eyckmax, Rev. Phys. Appl. 22, 687 (1987).

    Article  CAS  Google Scholar 

  10. Z. Shi and M. A. Green, J. Electrochem. Soc. 140, 3290 (1993).

    Article  CAS  Google Scholar 

  11. S. H. Lee, R. Bergmann, E. Bauser, and H. J. Queisser, Mater. Lett. 19, 1 (1994).

    Article  CAS  Google Scholar 

  12. T. L. Chu, J. Cryst. Growth 39, 45 (1977).

    Article  CAS  Google Scholar 

  13. H. V. Campe, D. Nikl, W. Schmidt, and F. Schomann, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1489.

  14. V. L. Dalal, H. Kressel, and P. H. Robinson, J. Appl. Phys. 46, 1283 (1975).

    Article  CAS  Google Scholar 

  15. I. Reis, A. Eyer, and A. Raüber, 20th IEEE PV Spec. Conf. (1985), p. 1405.

  16. E. Demesmaeker, M. Caymax, R. Mertens, Le Quang Nam, and M. Rodot, Int. J. Solar Energy 11, 37 (1992).

    Article  Google Scholar 

  17. J. H. Werner, S. Kolodinski, U. Rau, J. K. Arch, and E. Bauser, Appl. Phys. Lett. 62, 2998 (1993).

    Article  CAS  Google Scholar 

  18. O. Evrard, E. Demesmaeker, T. Vermeulen, M. Zagrebnov, M. Caymax, W. Laureys, J. Poortmans, J. Nijs, and R. Mertens, 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 440.

  19. R. Monna, A. Slaoui, and J. C. Muller, Mater. Sci. Eng. (in press).

  20. B. F. Wagner, Ch. Schetter, O. V. Sulima, and A. Bett, 23rd IEEE Photovoltaic Specialists Conf. (1993), p. 356.

  21. S. Kolodinski, J. H. Werner, U. Rau, J. K. Arch, and E. Bauser, Proc. 11th European Photovoltaic Solar Energy Conf. (1992), p. 53.

  22. T. Baba, Matsuyama, T. Sawada, T. Takahama, K. Wakisaka, S. Tsuda, and S. Nakano, IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1315.

  23. S. Arimoto, H. Morikawa, M. Deguchi, Y. Kawama, Y. Matsuno, T. Ishihara, H. Kumabe, and T. Murotani, IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1311.

  24. J. Bloem and L. J. Giling, in Current Topics in Materials Science, edited by E. Khaldis (North-Holland Publishing Comp., 1978), Vol. 1.

  25. F. C. Eversteinj, Philips Res. Rep. 26, 134 (1971).

    Google Scholar 

  26. J. Poortmans, private communication.

  27. M. Kittler and C. Ulhaq-Bouillet, J. Appl. Phys. 78, 1 (1995).

    Article  Google Scholar 

  28. H. Kiess, H. Birbaumer, D. Grützmacher, T. Mezacasa, R. Morf, and W. Rehwald, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1360.

  29. A. W. Blackers, K. J. Weber, M. F. Stuckings, S. Armand, G. Mat-lakowski, A. J. Carr, M. J. Stocks, A. Cuevas, and T. Brammer, Progress in Photovoltaics: Research and Applications 3, 193 (1995).

    Article  Google Scholar 

  30. G. F. Zheng, Z. Sci. R. Bergmann, X. Dai, S. Robinson, A. Wang, J. Kurianski, and M. A. Green, Solar Energy Materials and Solar Cells 32, 129 (1994).

    Article  CAS  Google Scholar 

  31. A. B. Sproul, S. Ederriston, S. R. Wenham, G. H. Heiser, and M. A. Green, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1563.

  32. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, Appl. Phys. Lett. 66, 3636 (1995).

    Article  CAS  Google Scholar 

  33. T. F. Ciszek, Crystals (Springer, Berlin, 1981), Vol. 5.

  34. H. Lange and I. Schwirtlich, J. Cryst. Growth 104, 108 (1990).

    Article  CAS  Google Scholar 

  35. A. Eyer, A. Raüber, and J. G. Grabmeier, Proc. 9th E. C. Photovoltaic Solar Energy Conf. (Kluwer Academic Publ., Dordrecht, 1989), p. 17.

  36. H-J. Möller, Semiconductors for Solar Cells (Artech House, Boston, 1993), p. 237.

  37. H-J. Möller, Semiconductors for Solar Cells (Artech House, Boston, 1993), p. 90.

  38. J. H. Werner and H. P. Strunk, Polycrystalline Semiconductors II (Springer Proc., Phys. Vol. 54, 1991).

  39. M. Konuma, E. Czech, I. Silier, and E. Bauser, Appl. Phys. Lett. 63, 205–207 (1993).

    Article  CAS  Google Scholar 

  40. M. Albrecht, B. Steiner, Th. Bergmann, A. Voigt, W. Dorsch, H. P. Strunk, and G. Wagner (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 889.

  41. B. Steiner and G. Wagner, J. Cryst. Growth 146, 293–298 (1995).

    Article  CAS  Google Scholar 

  42. B. Steiner, G. Wagner, A. Voigt, W. Dorsch, and H. P. Strunk, in Proceedings of the poly-SE-conference, Rome (1995).

  43. P. O. Hansson, M. Konuma, I. Silier, E. Bauser, M. Albrecht, W. Dorsch, and H. P. Strunk, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1254.

  44. J. H. Werner, R. Bergmann, and R. Brendel, Adv. Solid State Phys. 34 (1994).

  45. G. Wagner and B. Steiner, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 461.

  46. J. K. Weber, A. Stephens, and A. W. Blakers, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1590.

  47. P. De Pauw, Ph. D. Thesis Katholieke Universiteit Leuven (1984).

  48. E. Ghitani and S. Martinuzzi, in Polysilicon Films and Interfaces, edited by C. Y. Wong, C. V. Thompson, and K-N. Tu (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA, 1988), p. 225.

  49. J. Seto, J. Appl. Phys. 49 (1975).

  50. J. Poortmans, unpublished lifetime-measurements on epitaxial layers, grown at 850 °C in an RTCVD system.

  51. A. B. Arab, Solar Energy Materials and Solar Cells 37, 239 (1995).

    Article  Google Scholar 

  52. P. Sana, A. Rohatgi, J. P. Kalejs, and R. O. Bell, Appl. Phys. Lett. 64, 97 (1994).

    Article  CAS  Google Scholar 

  53. H. E. Elgamel, C. Vinckier, M. Caymax, M. Ghannam, J. Poort-mans, P. De Schepper, J. Nijs, and R. Mertens, Proc. 12th European Photovoltaic Solar Energy Conference, Amsterdam (1994), pp. 724–727.

  54. S. J. Pearton, J. W. Corbett, and T. S. Shi, Appl. Phys. A43, 153–195 (1987).

  55. C. Vinckier and S. De Jaegere, Reactivity of Solids 7, 61 (1989).

    Article  CAS  Google Scholar 

  56. K. Kaneko, R. Kawamura, H. Mizumoto, and T. Misawa, Proc. 11th European Photovoltaic Solar Energy Conference, Montreux (1992), p. 1070.

  57. T. Vermeulen, O. Evrard, W. Laureys, J. Poortmans, M. Caymax, J. Nijs, and R. Mertens, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1501.

  58. T. Vermeulen, O. Evrard, W. Laureys, J. Poortmans, M. Cay-max, J. Nijs, and R. Mertens, Proc. of the IEEE Conference on Photovoltaics, Washington, 1996.

  59. S. Sivoththaman, J. Poortmans, J. Nijs, and R. Mertens, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1428.

  60. Z. Shi, T. L. Young, and M. A. Green, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1579.

  61. R. Bergmann, J. Kühnie, J. H. Werner, S. Oetling, M. Albrecht, H. P. Strunk, K. Herz, and M. Powalla, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1398.

  62. R. L. Wallace, W. A. Anderson, and K. M. Jones, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1379.

  63. J. E. Cotter, A. M. Barnett, D. H. Ford, R. B. Hall, A. E. Ingram, J. A. Rand, T. R. Ruffins, K. P. Shreve, and C. J. Thomas, Progress in PV: Research and Applications 3, 351 (1995).

    CAS  Google Scholar 

  64. P. Joubert, B. Loisel, Y. Chouan, and L. Haji, J. Electrochem. Soc. 134, 2541 (1987).

    Article  CAS  Google Scholar 

  65. T. Fuyuki, H. Yoshida, and H. Matsunami, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1383.

  66. T. Akasaka, Y. Tanaka, and I. Shimizu, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1402.

  67. A. R. Middya, J. Guillet, J. E. Bourée, and J. Perrin, Polycrys-talline Semiconductors IV–Physics, Chemistry and Technology, edited by S. Pizzini, H. P. Strunk, and J. H. Werner (1995).

  68. A. R. Middya, J. Guillet, J. Perrin, A. Lloret, and J. E. Bourée, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1704.

  69. B. F. Wagner, F. Friedrich, N. Schillinger, and A. Eyer, Proc. 11th European Photovoltaic Solar Energy Conference, Montreux, 1992, p. 397.

  70. A. Takami, S. Arimoto, H. Naomoto, S. Hamamoto, T. Ishihara, H. Kumabe, and T. Murotani, Proc. 12th European Photovoltaic Solar Energy Conference, Amsterdam (1994), p. 59.

  71. A. Takami, S. Arimoto, H. Naomoto, S. Hamamoto, T. Ishihara, H. Kumabe, and T. Murotani, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1394.

  72. M. Pauli, T. Reindl, W. Krühler, F. Homberg, and J. Müller, in IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii (1994), p. 1387.

  73. T. Baba, T. Matsuyama, S. Tsuge, K. Wakisaka, and S. Tsuda, in 13th European Photovoltaic Solar Energy, Nice, France, October 1995, p. 1708.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaoui, A., Monna, R., Poortmans, J. et al. Crystalline silicon thin films: A promising approach for photovoltaics?. Journal of Materials Research 13, 2763–2774 (1998). https://doi.org/10.1557/JMR.1998.0378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0378

Navigation