Skip to main content
Log in

Micro-Raman Spectroscopic Characterization of Nanosized TiO2 Powders Prepared by Vapor Hydrolysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Micro-Raman analysis was used to study the structure of TiO2 powders produced at low (260 °C) and high (600–900 °C) temperatures by vapor hydrolysis of titanium tetraisopropoxide (TTIP). Spatial inhomogeneity was discovered after the amorphous TiO2 powders produced at low temperature were calcined at 700, 800, and 900 °C for 3 h. The TiO2 powders produced at high temperatures (from 600 to 900 °C) were found to be spatially homogeneous and predominately anatase in structure. Small amounts of rutile and brookite are found for powders produced at 700, 800, and 900 °C after calcination at 600 °C for 3 h. The rutile and brookite impurities are believed to be concentrated on the surface of anatase based on a comparison of results of Raman and x-ray diffraction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  2. R. J. Berry and M. R. Mueller, Microchem. J. 50, 28 (1994).

    Article  CAS  Google Scholar 

  3. R. I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, and R. J. D. Tilley, J. Solid State Chem. 92, 178 (1991).

    Article  CAS  Google Scholar 

  4. H. P. Maruska and A. K. Ghosh, Solar Energy 20, 443 (1978).

    Article  CAS  Google Scholar 

  5. P. V. Kamat, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1997), Vol. 103, p. 237.

    Google Scholar 

  6. P.P. Lottici, D. Bersani, and A. Montenero, J. Mater. Sci. 28, 177 (1993).

    Article  CAS  Google Scholar 

  7. E. Haro-Poniatowski, R. Rodriguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, and R. Arroyo-Murillo, J. Mater. Res. 9, 2102 (1994).

    Article  CAS  Google Scholar 

  8. J. C. Parker and R.W. Siegel, J. Mater. Res. 5, 1246 (1990).

    Article  CAS  Google Scholar 

  9. G. Busca, G. Ramis, J.M. G. Amores, V.S. Escribano, and P. Piaggio, J. Chem. Soc. Faraday Trans. 90, 3181 (1994).

    Article  CAS  Google Scholar 

  10. K. Okuyama, Y. Kousaka, N. Tohge, S. Yamamoto, J.J. Wu, R.C. Flagan, and J. H. Seinfeld, AIChE. J. 32, 2010 (1986).

    Article  CAS  Google Scholar 

  11. R.A. Spurr and H. Myers, Anal. Chem. 29, 760 (1957).

    Article  CAS  Google Scholar 

  12. A.R. West, Solid State Chemistry and its Applications (Wiley, New York, 1984), p. 174.

    Google Scholar 

  13. A. Chaves, K. S. Katiyan, and S. P. S. Porto, Phys. Rev. 10, 3522 (1974).

    Article  CAS  Google Scholar 

  14. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).

    Article  Google Scholar 

  15. G.A. Tompsett, G. A. Bowmaker, B. P. Cooney, J. B. Metson, K.A. Rodgers, and J. M. Seakins, J. Raman Spectrosc. 26, 57 (1995).

    Article  CAS  Google Scholar 

  16. U. Balachadran and N. G. Eror, J. Solid State Chem. 42, 276 (1982).

    Article  Google Scholar 

  17. T. Ohsaka, S. Yamoka, and O. Shimomura, Solid State Commun. 30, 345 (1979).

    Article  CAS  Google Scholar 

  18. L.H. Edelson and A. M. Glaeser, J. Am. Ceram. Soc. 71, 225 (1988).

    Article  CAS  Google Scholar 

  19. S. Kelly, F. H. Pollak, and M. Tomkiewicz, J. Phys. Chem. B 101, 2730 (1997).

    Article  CAS  Google Scholar 

  20. W. P. Pawlewicz, G. J. Exarhos, and W. E. Canoway, Appl. Opt. 22, 1837 (1983).

    Article  CAS  Google Scholar 

  21. R.J. Capwell, F. Spagnolo, and M. A. De Sessa, Appl. Spectrosc. 26, 537 (1972).

    Article  CAS  Google Scholar 

  22. X.Z. Ding, X.H. Liu, and Y. Z. He, J. Mater. Sci. Lett. 15, 1789 (1996).

    Article  CAS  Google Scholar 

  23. T.W. Zerda and G. Hoang, J. Non-Cryst. Solid 109, 9 (1989).

    Article  CAS  Google Scholar 

  24. D.D. Beck and R. W. Siegel, J. Mater. Res. 7, 2840 (1992).

    Article  CAS  Google Scholar 

  25. V.S. Lusvardi, M. A. Barteau, and W. E. Farneth, J. Catal. 153, 41 (1995).

    Article  CAS  Google Scholar 

  26. G. Busca, H. Saussey, O. Saur, J.C. Lavalley, and V. Lorenzelli, Appl. Catal. 14, 245 (1985).

    Article  CAS  Google Scholar 

  27. G. Ramis, G. Busca, and V. Lorenzelli, J. Chem. Soc., Faraday Trans. 1 83, 1591 (1987).

    Article  CAS  Google Scholar 

  28. M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, and K. Furic, Mater. Lett. 28, 225 (1996).

    Article  CAS  Google Scholar 

  29. H. Cheng, J. Ma, Z. Zhao, and L. Qi, Chem. Mater. 7 (4), 663 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YH., Chan, C.K., Porter, J.F. et al. Micro-Raman Spectroscopic Characterization of Nanosized TiO2 Powders Prepared by Vapor Hydrolysis. Journal of Materials Research 13, 2602–2609 (1998). https://doi.org/10.1557/JMR.1998.0363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0363

Navigation