Skip to main content
Log in

Do Carbon Nanotubes Spin When Bundled?

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using ab initio and parametrized techniques, we determine the equilibrium structure of an ordered “bundle” of (10,10) carbon nanotubes. Because of small intertube interaction and lattice frustration, we predict a very soft libration mode to occur at v ≈ 12 cm−1. This mode is predicted to disappear above the orientational melting temperature which marks the onset of free tube rotations about their axis. We discuss the effect of the weak intertube coupling and orientational disorder on the electronic structure near the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S. C. O’Brien, R. F. Curl, and R.E. Smalley, Nature (London) 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature (London) 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature (London) 381, 678 (1996).

    Article  CAS  Google Scholar 

  4. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S. G. Kim, D.T. Colbert, G. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).

    Article  CAS  Google Scholar 

  5. For an overview of the rapidly developing field of carbon nanotubes, see M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press Inc., San Diego, 1996), and references therein.

    Google Scholar 

  6. C.S. Yannoni, R.D. Johnson, G. Meijer, D. S. Bethune, and J. R. Salem, J. Phys. Chem. 95, 9 (1991); R. Tycko, R. C. Haddon, G. Dabbagh, S. H. Glarum, D. C. Douglass, and A.M. Mujsce, J. Phys. Chem. 95, 518 (1991).

    Article  CAS  Google Scholar 

  7. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature (London) 347, 354 (1990).

    Article  Google Scholar 

  8. P. Nikolaev, A. Thess, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 266, 422 (1997).

    Article  CAS  Google Scholar 

  9. Y.H. Lee, S.G. Kim, and D. Tománek, Phys. Rev. Lett. 78, 2393 (1997).

    Article  CAS  Google Scholar 

  10. M. Schluter, M. Lannoo, M. Needels, G. A. Baraff, and D. Tománek, Phys. Rev. Lett. 68, 526 (1992).

    Article  CAS  Google Scholar 

  11. S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).

    Article  CAS  Google Scholar 

  12. C.L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  CAS  Google Scholar 

  13. J. E. Fischer, H. Dai, A. Thess, R. Lee, N. Hanjani, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B 55, R4921 (1997).

    Article  CAS  Google Scholar 

  14. O. Sugino and A. Oshiyama, Phys. Rev. Lett. 68, 1858 (1992).

    Article  CAS  Google Scholar 

  15. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  16. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  CAS  Google Scholar 

  17. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  18. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  19. J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T.R. Ohno, G.H. Kroll, N. Troullier, R. E. Haufler, and R.E. Smalley, Phys. Rev. Lett. 66, 1741 (1991).

    Article  CAS  Google Scholar 

  20. S. Okada and S. Saito, Phys. Rev. B 55, 4039 (1997).

    Article  CAS  Google Scholar 

  21. D. Tománek and Michael A. Schluter, Phys. Rev. Lett. 67, 2331 (1991).

    Article  Google Scholar 

  22. Rather than using a fixed cutoff distance in our parametrized scheme, which would cause artifacts in the energy due to a changing neighbor map during tube rotations, we obtained the potential energy surface by carefully integrating over energy differences due to small rotations, during which the neighbor map was kept fired.

  23. W. Holmes, J. Hone, P. L. Richards, and A. Zettl, Bull. Am. Phys. Soc. 43, 629 (1998).

    Google Scholar 

  24. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R.E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).

    Article  Google Scholar 

  25. T.W. Odom, J-L. Huang, P. Kim, and C.M. Lieber, Nature (London) 391, 62 (1998).

    Article  CAS  Google Scholar 

  26. Y-K. Kwon and D. Tománek (unpublished).

  27. A.B. Kaiser, G. Düsberg, and S. Roth, Phys. Rev. B 57, 1418 (1998).

    Article  CAS  Google Scholar 

  28. L. Langer, V. Bayot, E. Grivei, J-P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996).

    Article  CAS  Google Scholar 

  29. C. Christides, D. A. Neumann, K. Prassides, J. R. D. Copley, J. J. Rush, M.J. Rosseinsky, D.W. Murphy, and R.C. Haddon, Phys. Rev. B 46, 12 088 (1992).

    Article  CAS  Google Scholar 

  30. P. Delaney, H. J. Choi, J. Ihm, S.G. Louie, and M.L. Cohen, Nature (London) 391, 466 (1998).

    Article  CAS  Google Scholar 

  31. J-C. Charlier, X. Gonze, and J-P. Michenaud, Europhys. Lett. 29, 43 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, YK., Tománek, D., Lee, Y.H. et al. Do Carbon Nanotubes Spin When Bundled?. Journal of Materials Research 13, 2363–2367 (1998). https://doi.org/10.1557/JMR.1998.0329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0329

Navigation