Skip to main content
Log in

Evolution of stresses in passivated and unpassivated metal interconnects

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper discusses computational simulations of the evolution of stresses and deformation in unpassivated and SiO2-passivated Al lines on Si substrates. The finite element model accounts for elastic-plastic deformation in the Al lines during etching, passivation, and subsequent thermal cycling, by recourse to a generalized plane strain formulation within the context of a unit cell with appropriately constrained boundary conditions. The effects of different controlled variations in thermal history, and in the width, height, spacing, and yield behavior of the Al lines are analyzed; all these factors are seen to have potentially strong effects on the evolution of stresses within the lines. The predictions of the computations presented in this work are amenable for direct comparisons with experiments of curvature evolution along and perpendicular to the lines upon patterning, passivation, and thermal loading. The predicted stresses in metal interconnects can be directly used for reliability modeling purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Flinn, A. S. Mack, P. R. Besser, and T.N. Marieb, MRS Bull. 18 (12), 26 (1993).

    Article  CAS  Google Scholar 

  2. T.D. Sullivan, Annu. Rev. Mater. Sci. 26, 333 (1996).

    Article  CAS  Google Scholar 

  3. M. A. Korhonen, P. Borgensen, K-N. Tu, and C-Y. Li, J. Appl. Phys. 73, 3790 (1993).

    Article  CAS  Google Scholar 

  4. J. J. Clement and C. V. Thompson, J. Appl. Phys. 78, 900 (1990).

    Article  Google Scholar 

  5. B. D. Knowlton, C. V. Thompson, and J.J. Clement, J. Appl. Phys. 81, 6073 (1997); B. D. Knowlton, Ph.D. Thesis, Massachusetts Institute of Technology (1996).

  6. A. I. Sauter and W. D. Nix, IEEE Trans. Comp. Hybrids Manufact. Technol. 15, 594 (1991).

    Article  Google Scholar 

  7. B. Greenebaum, A. I. Sauter, P. A. Flinn, and W. D. Nix, Appl. Phys. Lett. 58, 1845 (1991).

    Article  CAS  Google Scholar 

  8. D. Chidambarrao, K. P. Rodbell, M. D. Thouless, and P. W. DeHaven, Materials Reliability in Microelectronics IV, edited by P. Borgesen, J. C. Coburn, J. E. Sanchez, Jr., K. P. Rodbell, and W. F. Filter (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 261.

  9. T. Marieb, A. S. Mack, N. Cox, D. Gardner, and X. C. Xu, Polycrystalline Thin Films II: Structure, Texture, Properties, and Applications, edited by H. J. Frost, C. A. Ross, M. A. Parker, and E. A. Holm (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, PA, 1996).

  10. J. Lee, Q. Ma, T. Marieb, A. S. Mack, H. Fujimoto, P.A. Flinn, B. Woolery, and L. Keys, in Materials Reliability in Microelectronics V, edited by A. S. Oates, K. Gadepally, R. Rosenberg, W. F. Filter, and L. Greer (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), p. 115.

  11. Y-L. Shen, S. Suresh, and I. A. Blech, J. Appl. Phys. 80, 1388 (1996).

    Article  CAS  Google Scholar 

  12. P. A. Flinn, D. S. Gardner, and W. D. Nix, IEEE Trans. Electron Dev. ED-34, 689 (1987).

    Article  Google Scholar 

  13. S. G. H. Anderson, I. S. Yeo, P. S. Ho, S. Ramaswami, and R. Cheung, in Materials Reliability in Microelectronics III, edited by K. P. Rodbell, W. F. Filter, P. S. Ho, and H. Frost (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 261.

  14. P. H. Townsend, D. M. Barnett, and T. A. Brunner, J. Appl. Phys. 62, 4438 (1987).

    Article  Google Scholar 

  15. J. D. Romero, M. Khan, H. Fatemi, and J. Turlo, J. Mater. Res. 6, 1996 (1991).

    Article  CAS  Google Scholar 

  16. V. T. Gillard and W. D. Nix, Z. Metallkd. 84, 874 (1993).

    CAS  Google Scholar 

  17. U. Burges, H. Helneder, H. Korner, H. Schroeder, and W. Schilling, in Materials Reliability in Microelectronics IV, edited by P. Borgesen, J. C. Coburn, J. E. Sanchez, Jr., K. P. Rodbell, and W. F. Filter (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 247.

  18. J. Proost, A. Witvrouw, P. Cosemans, Ph. Roussel, and K. Maex, Microelectronic Engng. 33, 137 (1997).

    Article  CAS  Google Scholar 

  19. M. Finot, I. A. Blech, S. Suresh, and H. Fujimoto, J. Appl. Phys. 81, 3457 (1997).

    Article  CAS  Google Scholar 

  20. E. C. Chu, Y-L. Shen, and S. Suresh, Technical Report Lexcom 9/96, Massachusetts Institute of Technology, Cambridge, MA.

  21. A. Gouldstone, V. T. Srikar, Y-L. Shen, S. Suresh, and C.V. Thompson, research in progress, Massachusetts Institute of Technology, Cambridge, MA.

  22. ABAQUS, Version 5.4, general purpose finite element program, Hibbit, Karlson, and Sorensen, Inc., Pawtucket, RI (1995).

  23. Y-L. Shen, J. Mater. Res. 12, 2219 (1997).

    Article  CAS  Google Scholar 

  24. Y-L. Shen and S. Suresh, Acta Metall. Mater. 43, 3915 (1995).

    Article  CAS  Google Scholar 

  25. H. Niwa, H. Yagi, and H. Tsuchikawa, J. Appl. Phys. 68, 1 (1990).

    Article  Google Scholar 

  26. G. L. Povirk, R. Mohan, and S. B. Brown, J. Appl. Phys. 77, 598 (1995).

    Article  CAS  Google Scholar 

  27. I.-S. Yeo, S. G. H. Anderson, P. S. Ho, and C. K. Hu, J. Appl. Phys. 78, 953 (1995).

    Article  CAS  Google Scholar 

  28. Y-L. Shen, J. Appl. Phys. 82, 1578 (1997).

    Article  CAS  Google Scholar 

  29. P. A. Flinn and G. A. Waychunas, J. Vac. Sci. Technol. B 6, 1749 (1988).

    Article  CAS  Google Scholar 

  30. P. A. Flinn and C. Chiang, J. Appl. Phys. 67, 2927 (1990).

    Article  CAS  Google Scholar 

  31. L. Maniguet, M. Ignat, M. Dupeux, J.J. Bacmann, and Ph. Normandon, in Materials Reliability in Microelectronics III, edited by K. P. Rodbell, W. F. Filter, H.J. Frost, and P. S. Ho (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 217.

  32. L. Maniguet, M. Ignat, M. Dupeux, P. A. Flinn, Ph. Normandon, P. Gergaud, and J. J. Bacmann, in Advanced Metallization for ULSI Applications 1992, edited by T. S. Cale and F. S. Pintchovski (Mater. Res. Soc. Symp. Proc. V-8, Pittsburgh, PA, 1993), p. 67.

  33. L. Maniguet, M. Ignat, M. Dupeux, J. J. Bacmann, and Ph. Normandon, in Materials Reliability in Microelectronics IV, edited by P. Borgesen, J. C. Coburn, J. E. Sanchez, Jr., K. P. Rodbell, and W.F. Filter, (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 241.

  34. P.R. Besser, S. Brennan, and J. C. Bravman, J. Mater. Res. 9, 13 (1994).

    Article  CAS  Google Scholar 

  35. W.M. Kuschke and E. Arzt, Appl. Phys. Lett. 64, 1097 (1994).

    Article  CAS  Google Scholar 

  36. P.R. Besser, T. N. Marieb, J. Lee, P. A. Flinn, and J. C. Bravman, J. Mater. Res. 11, 1097 (1996).

    Article  Google Scholar 

  37. R.P. Vinci and J. J. Vlassak, Annu. Rev. Mater. Sci. 26, 431 (1996).

    Article  CAS  Google Scholar 

  38. N. Yamamoto and S. Sakata, Jpn. J. Appl. Phys. 34, L664 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouldstone, A., Shen, YL., Suresh, S. et al. Evolution of stresses in passivated and unpassivated metal interconnects. Journal of Materials Research 13, 1956–1966 (1998). https://doi.org/10.1557/JMR.1998.0275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0275

Navigation