Skip to main content
Log in

Stress evolution in passivated thin films of Cu on silica substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stresses supported by thin films of Cu passivated by SiOx have been measured upon thermal cycling. Very high stresses have been found, approaching 1 GPa in the thinnest (40 nm) films. Strengthening beyond yield occurs upon both cooling and heating, indicative of strong strain hardening in the Cu. The hardening continues down to at least 77 K. The yielding behavior of the Cu films has been characterized by a kinematic constitutive law, with exceptional strain hardening and a conventional temperature-dependent yield strength. The physical basis for this behavior is ascribed to confined shear bands in the Cu that induce large back stress. Transmission electron microscopy reveals aligned dislocations, which seemingly dictate the inelastic deformations in the shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Spaepen and A. L. Shull, Current Opinion in Solid State & Materials Science 1, 678 (1996).

    Article  Google Scholar 

  2. Thin Films: Stresses and Mechanical Properties I, edited by J. C. Bravman, W. D. Nix, D. M. Barnett, and D. A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989).

  3. Thin Films: Stresses and Mechanical Properties II, edited by M. F. Doerner, W. C. Oliver, G. M. Pharr, and Fr. Brotzen (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990).

  4. Thin Films: Stresses and Mechanical Properties III, edited by W. D. Nix, J. C. Bravman, E. Arzt, and L. B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992).

  5. C. V. Thompson and R. Carel, J. Mech. Phys. Sol. 44, 657–673 (1996).

    Article  CAS  Google Scholar 

  6. M. D. Thouless, J. Gupta, and J. M. E. Harper, J. Mater. Res. 8, 1845–1852 (1993).

    Article  CAS  Google Scholar 

  7. P. R. Besser, S. Brennan, and J. C. Bravman, J. Mater. Res. 9, 13–24 (1994).

    Article  CAS  Google Scholar 

  8. R. Venkatraman, J. C. Bravman, W. D. Nix, P. W. Davies, P. A. Flinn, and D. B. Fraser, J. Electronic Mater. 10, 1231–1237 (1990).

    Article  Google Scholar 

  9. E. M. Zielinski, R. P. Vinci, and J. C. Bravman, J. Appl. Phys. 76, 4516–4523 (1994).

    Article  CAS  Google Scholar 

  10. A. L. Shull and F. Spaepen, J. Appl. Phys. 80, 6243–6256 (1996).

    Article  CAS  Google Scholar 

  11. A. G. Evans and J. W. Hutchinson, Acta Metall. Mater. 43, 2507–2530 (1995).

    Article  CAS  Google Scholar 

  12. C. V. Thompson, Ann. Rev. Mater. Sci. 20, 245–268 (1990).

    Article  CAS  Google Scholar 

  13. C. V. Thompson and R. Carel, Mater. Sci. Eng. B32, 211–219 (1995).

    Article  CAS  Google Scholar 

  14. W. D. Nix, Metall. Trans. 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  15. M. D. Thouless, Acta Metall. Mater. 41, 1057–1064 (1993).

    Article  CAS  Google Scholar 

  16. L. M. Brown and W. M. Stobbs, Philos. Mag. 34, 351 (1976).

    Article  CAS  Google Scholar 

  17. P. S. Flinn, J. Mater. Res. 6, 1498–1501 (1991).

    Article  CAS  Google Scholar 

  18. Y-L. Shen and S. Suresh, Acta Metall. Mater. 43, 3915–3926 (1995).

    Article  CAS  Google Scholar 

  19. G. Stoney, Proc. Roy. Soc., London, A 82, 172 (1909).

    Article  CAS  Google Scholar 

  20. E. C. Chu, Y-L. Shen, and S. Suresh, MIT Report, November 1996.

  21. R. P. Vinci, E. M. Zeiliski, and J. C. Bravman, Thin Solid Films 262, 142–153 (1995).

    Article  CAS  Google Scholar 

  22. A. Strecker, U. Salzberger, and J. Mayer, Prakt. Metallogr. 30, 482–495 (1993).

    CAS  Google Scholar 

  23. P. J. Goodhew, in Practical Methods in Electron Microscopy, edited by Audrey M. Glauert (Elsevier, New York, 1985).

    Google Scholar 

  24. J. E. Burke and D. Turnbull, Progr. Met. Phys. 3, 220 (1952).

    Article  CAS  Google Scholar 

  25. H. J. Frost and M. F. Ashby, Deformation-Mechanism (Pergamon Press, Oxford, 1982).

    Google Scholar 

  26. D. C. Drucker and L. Palgen, J. Appl. Mech. 48, 479–485 (1981).

    Article  Google Scholar 

  27. R. M. Keller, S. Bader, R.P. Vinci, and E. Arzt, in Thin Films: Stresses and Mechanical Properties V, edited by S. P. Baker, C. A. Ross, P. H. Townsend, C. A. Volkert, and P. Børgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), pp. 453–548.

  28. C. A. O. Henning, F. W. Boswell, and J. M. Corbett, Acta Metall. 23, 177–185 (1975).

    Article  CAS  Google Scholar 

  29. F. R. N. Nabarro, Some Recent Developments in Rheology (British Rheology Club, 1950).

  30. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford Press, 1953), pp. 111–113.

  31. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  32. F. Gaudette, S. Suresh, G. Dehm, M. Ruhle, and A. G. Evans, Acta Mater. 45, 3503–3513 (1997).

    Article  CAS  Google Scholar 

  33. W.T. Koiter, J. Appl. Mech. 32, 237 (1965).

    Article  Google Scholar 

  34. G. C. Sih, Handbook of Stress Intensity Factors (Lehigh University Press, Lehigh, PA, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, YL., Suresh, S., He, M.Y. et al. Stress evolution in passivated thin films of Cu on silica substrates. Journal of Materials Research 13, 1928–1937 (1998). https://doi.org/10.1557/JMR.1998.0272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0272

Navigation