Skip to main content
Log in

Aluminum nitride-silicon carbide solid solutions grown by plasma-assisted, gas-source molecular beam epitaxy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solid solutions of aluminum nitride (AlN) and silicon carbide (SiC) have been grown at 900–1300 °C on vicinal α (6H)-SiC(0001) substrates by plasma-assisted, gas-source molecular beam epitaxy. Under specific processing conditions, films of (AlN)x(SiC) 1−x with 0.2 ≤ x ≤ 0.8, as determined by Auger electron spectrometry (AES), were deposited. Reflection high-energy electron diffraction (RHEED) was used to determine the crystalline quality, surface character, and epilayer polytype. Analysis of the resulting surfaces was also performed by scanning electron microscopy (SEM). High-resolution transmission electron microscopy (HRTEM) revealed that monocrystalline films with x ≥ 0.25 had the wurtzite (2H) crystal structure; however, films with x < 0.25 had the zincblende (3C) crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Fisher and P. Barnes, Philos. Mag. B 61, 217 (1990).

    Article  CAS  Google Scholar 

  2. W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys. 44, 292 (1973).

    Article  CAS  Google Scholar 

  3. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  4. G. A. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  CAS  Google Scholar 

  5. L. Zheng, S. Ramalingam, T. Shi, and R. L. Peterson, J. Vac. Sci. Technol. A 11, 2437 (1993).

    Article  CAS  Google Scholar 

  6. H. Okano, N. Tanaka, K. Shibata, and S. Nakano, Jpn. J. Appl. Phys. 32, 4052 (1993).

    Article  CAS  Google Scholar 

  7. H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Appl. Phys. Lett. 64, 166 (1994).

    Article  CAS  Google Scholar 

  8. S. K. Tikhonov, N. I. Sushentov, and V. Yu. Rud’, Tech. Phys. Lett. 21, 187 (1995).

    Google Scholar 

  9. S. Mirsh and H. Reimer, Phys. Status Solidi 11, 631 (1972).

    Article  Google Scholar 

  10. J. Bauer, L. Biste, D. Bolze, and G. Eichorn, Phys. Status Solidi 399, 173 (1977).

    Article  Google Scholar 

  11. M. Morita, S. Isogai, K. Tsubouchi, and N. Mikoshiba, Appl. Phys. Lett. 38, 50 (1981).

    Article  CAS  Google Scholar 

  12. M. Morita, K. Tsubouchi, and N. Mikoshiba, Jpn. J. Appl. Phys. 21, 728 (1982).

    Article  CAS  Google Scholar 

  13. M. Koshinaka, H. Fujii, K. Nakanishi, and Y. Shibuya, Vacuum 41, 1971 (1990).

    Article  CAS  Google Scholar 

  14. A.U. Ahmed, A. Rys, N. Singh, J.H. Edgar, and Z.J. Yu, J. Electrochem. Soc. 139, 1146 (1992).

    Article  CAS  Google Scholar 

  15. F. Alexandre, J. M. Masson, G. Post, and A. Scavennec, Thin Solid Films 98, 75 (1982).

    Article  CAS  Google Scholar 

  16. S. Fujieda, J. Mizuki, and Y. Matsumoto, Jpn. J. Appl. Phys. 27, L296 (1988).

    Article  CAS  Google Scholar 

  17. S. Fujieda, Y. Mochizuki, K. Akimoto, I. Hirosawa, Y. Matsumoto, and J. Matsui, Jpn. J. Appl. Phys. 29, L364 (1990).

    Article  CAS  Google Scholar 

  18. Y. Mochizuki, M. Mizuta, S. Fujieda, and Y. Matsumoto, J. Appl. Phys. 67, 2466 (1990).

    Article  CAS  Google Scholar 

  19. P. Bhattacharya and D. N. Bose, Jpn. J. Appl. Phys. 30, L1750 (1991).

    Article  Google Scholar 

  20. S. Fujieda, K. Akimoto, I. Hirosawa, J. Mizuki, Y. Matsumoto, and J. Matsui, Jpn. J. Appl. Phys. 28, L16 (1989).

    Article  CAS  Google Scholar 

  21. M. O. Aboelfotoh, R. S. Kern, R. F. Davis, and C. I. Harris, unpublished.

  22. C. Matignon, Compt. Rend. hu. L’Acad. Sci. 178, 1615 (1924).

    CAS  Google Scholar 

  23. W. Rafaniello, K. Cho, and A. V. Virkar, J. Mater. Sci. 16, 3479 (1981).

    Article  CAS  Google Scholar 

  24. W. Rafaniello, M. R. Plichta, and A. V. Virkar, J. Am. Ceram. Soc. 66, 272 (1983).

    Article  CAS  Google Scholar 

  25. R. Ruh and A. Zangvil, J. Am. Ceram. Soc. 65, 260 (1982).

    Article  CAS  Google Scholar 

  26. A. Zangvil and R. Ruh, Mater. Sci. Eng. 71, 159 (1985).

    Article  CAS  Google Scholar 

  27. A. Zangvil and R. Ruh, J. Am. Ceram. Soc. 71, 884 (1988).

    Article  CAS  Google Scholar 

  28. A. Zangvil and R. Ruh, in Silicon Carbide ‘87, edited by J. D. Cawley and C. E. Semler (American Ceramic Society, Westerville, OH, 1989), p. 63.

    Google Scholar 

  29. S-Y. Kuo, A. V. Virkar, and W. Rafaniello, J. Am. Ceram. Soc. 70, C-125 (1987).

    Article  Google Scholar 

  30. S-Y. Kuo and A. V. Virkar, J. Am. Ceram. Soc. 73, 2640 (1990).

    Article  CAS  Google Scholar 

  31. C. L. Czekaj, M. L. J. Hackney, W. J. Hurley, Jr., L. V. Interrante, G. A. Sigel, P. J. Shields, and G. A. Slack, J. Am. Ceram. Soc. 73, 352 (1990).

    Article  CAS  Google Scholar 

  32. Sh. A. Nurmagomedov, A. N. Pikhtin, V. N. Razbegaev, G. K. Safaraliev, Yu. M. Tairov, and V. F. Tsvetkov, Sov. Tech. Phys. Lett. 12, 431 (1986).

    Google Scholar 

  33. Sh. A. Nurmagomedov, G. K. Safaraliev, N. D. Sorokin, Yu. M. Tairov, and V. F. Tsvetkov, Inorg. Mater. 22, 1464 (1986).

    Google Scholar 

  34. Sh. A. Nurmagomedov, A. N. Pikhtin, V. N. Razbegaev, G. K. Safaraliev, Yu. M. Tairov, and V. F. Tsvetkov, Sov. Phys. Semicond. 23, 100 (1989).

    Google Scholar 

  35. G. K. Safaraliev, G. K. Sukhanek, Yu. M. Tairov, and V. F. Tsvetkov, Inorg. Mater. 22, 1610 (1986).

    Google Scholar 

  36. G. K. Safaraliev, Yu. M. Tairov, and V. F. Tsvetkov, Sov. Phys. Semicond. 25, 865 (1991).

    Google Scholar 

  37. G.K. Safaraliev, Yu.M. Tairov, V.F. Tsvetkov, Sh. Sh. Shabanov, E. G. Pashchuk, N. V. Offitserova, D. D. Avrov, and S. A. Sadykov, Semicond. 27, 224 (1993).

    Google Scholar 

  38. G. K. Safaraliev and Yu. M. Tairov, in Transactions of the Second International High Temperature Electronics Conference (1994), p. XIV-25.

  39. G. K. Safaraliev and Yu. M. Tairov, in Technical Digest of the International Conference on Silicon Carbide and Related Materials 1995 (1995), p. 454.

  40. V. A. Dmitriev, L. B. Elfimov, I. Yu. Lin’kov, Ya V. Morozenko, I. P. Nikitina, V. E. Chelnokov, A. E. Cherenkov, and M. A. Chernov, Sov. Tech. Phys. Lett. 17, 214 (1991).

    Google Scholar 

  41. V. A. Dmitriev, in Amorphous and Crystalline Silicon Carbide III and Other Group IV-IV Materials, edited by G. L. Harris, M. G. Spencer, and C. Y. Yang (Springer-Verlag, Berlin, 1992), p. 3.

    Google Scholar 

  42. V. A. Dmitriev, L. B. Elfimov, I. Yu. Lin’kov, Ya. V. Morozenko, I. P. Nikitina, V. E. Chelnokov, A. E. Cherenkov, and M. A. Chernov, in Amorphous and Crystalline Silicon Carbide IV, edited by C. Y. Yang, M. M. Rahman, and G. L. Harris (Springer-Verlag, Berlin, 1992), p. 101.

    Chapter  Google Scholar 

  43. V. Dmitriev and A. Cherenkov, J. Cryst. Growth 128, 343 (1993).

    Article  CAS  Google Scholar 

  44. V. A. Dmitriev, Phys. B 185, 440 (1993).

    Article  CAS  Google Scholar 

  45. V. A. Dmitriev, K. G. Irvine, M. G. Spencer, and I. P. Nikitina, in Silicon Carbide and Related Materials, edited by M. G. Spencer, R. P. Devaty, J. A. Edmond, M. A. Khan, R. Kaplan, and M. Rahman (Institute of Physics, Bristol, 1994), p. 67.

    Google Scholar 

  46. I. Jenkins, K.G. Irvine, M. G. Spencer, V. Dmitriev, and N. Chen, J. Cryst. Growth 128, 375 (1993).

    Article  CAS  Google Scholar 

  47. K. Wongchotigul, M. G. Spencer, N. Chen, and B. D. Prasad, Mater. Lett. 21, 381 (1994).

    Article  CAS  Google Scholar 

  48. K. Wongchotigul, M. G. Spencer, N. Chen, D. Zhang, K. Fekade, A. Gomez, C. Thomas, V. Dmitriev, and K. Irvine, in Silicon Carbide and Related Materials, edited by M. G. Spencer, R. P. Devaty, J.A. Edmond, M.A. Khan, R. Kaplan, and M. Rahman (Institute of Physics, Bristol, 1994), p. 397.

    Google Scholar 

  49. J. H. Edgar, Z.J. Yu, and B. S. Swye, in Silicon Carbide and Related Materials, edited by M. G. Spencer, R. P. Devaty, J. A. Edmond, M.A. Khan, R. Kaplan, and M. Rahman (Institute of Physics, Bristol, 1994), p. 401.

    Google Scholar 

  50. J. Edmond, H. Kong, and V. Dmitriev, in Silicon Carbide and Related Materials, edited by M. G. Spencer, R. P. Devaty, J. A. Edmond, M.A. Khan, R. Kaplan, and M. Rahman (Institute of Physics, Bristol, 1994), p. 515.

    Google Scholar 

  51. L.B. Rowland, S. Tanaka, R. S. Kern, and R. F. Davis, in Amorphous and Crystalline Silicon Carbide IV, edited by C. Y. Yang, M.M. Rahman, and G. L. Harris (Springer-Verlag, Berlin, 1992), p. 84.

    Chapter  Google Scholar 

  52. R.S. Kern, Ph.D. Thesis, North Carolina State University, Raleigh, NC (1996).

  53. A.N. Wright and C.A. Winkler, Active Nitrogen (Academic Press, New York, 1968).

    Google Scholar 

  54. R.P. Vaudo, J. W. Cook, Jr., and J. F. Schetzina, J. Vac. Sci. Technol. B 12, 1232 (1994).

    Article  CAS  Google Scholar 

  55. R.J. Molnar and T.D. Moustakas, J. Appl. Phys. 76, 4587 (1994).

    Article  CAS  Google Scholar 

  56. A. Zalar, Thin Solid Films 124, 223 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, R.S., Rowland, L.B., Tanaka, S. et al. Aluminum nitride-silicon carbide solid solutions grown by plasma-assisted, gas-source molecular beam epitaxy. Journal of Materials Research 13, 1816–1822 (1998). https://doi.org/10.1557/JMR.1998.0257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0257

Navigation