Skip to main content
Log in

Phase formation sequence induced by deposition temperatures in Nb/Si multilayers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The phase formation sequence in Nb/Si multilayers formed at different deposition temperatures was investigated by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The amorphous phases were found to form in Nb/Si multilayers deposited at room temperature and 560 °C, but the compositions of these two amorphous phases were different. The crystalline Nb3Si and Nb5Si3 were formed in Nb/Si multilayers deposited at 180–500 °C. The interfacial energy and modified heat of formation are adopted to explain our obtained results. The occurrence of crystalline Nb5Si3, NbSi2, and amorphous silicide phase was found when the Nb/Si multilayers with Nb3Si phase were annealed at 550 °C, while only NbSi2 was found to form when annealing this sample at 700 °C. The mobility of Si takes an important role in phase formation in Nb/Si multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ronay, Appl. Phys. Lett. 42, 577 (1983).

    Article  CAS  Google Scholar 

  2. J. R. Abelson, K. B. Kim, D. E. Mercer, C. R. Helms, R. Sinclair, and W. Sigmon, J. Appl. Phys. 63, 689 (1988).

    Article  CAS  Google Scholar 

  3. W. Lur and L. J. Chen, Appl. Phys. Lett. 54, 1217 (1989).

    Article  CAS  Google Scholar 

  4. T. L. Lee and L. J. Chen, J. Appl. Phys. 73, 8258 (1993).

    Article  CAS  Google Scholar 

  5. W. H. Wang and W. K. Wang, J. Appl. Phys. 76 (3), 1578 (1994).

    Article  CAS  Google Scholar 

  6. R. Bene, J. Appl. Phys. 61 (5), 1826 (1987).

    Article  CAS  Google Scholar 

  7. F. M. d’Heurle and P. Gas, J. Mater. Res. 1, 205 (1986).

    Article  Google Scholar 

  8. U. Gosele and K. N. Tu, J. Appl. Phys. 66, 2612 (1989).

    Article  Google Scholar 

  9. S. F. Gong and H. T. Hentzell, J. Appl. Phys. 68 (9), 4542 (1990).

    Article  CAS  Google Scholar 

  10. E. E. Fullerton, J. Pearson, C. H. Sowers, and S. D. Bader, Phys. Rev. B 48, 17 432 (1993).

    Article  CAS  Google Scholar 

  11. J-M. Baribeau, D. J. Lockwood, and R. W. G. Syme, J. Appl. Phys. 83 (3), 1450 (1996).

    Article  Google Scholar 

  12. S. S. Parkin and B. R. York, Appl. Phys. Lett. 62 (15), 1842 (1993).

    Article  CAS  Google Scholar 

  13. W. H. Wang and W. K. Wang, J. Mater. Res. 9, 401 (1994).

    Article  CAS  Google Scholar 

  14. W. H. Wang and W. K. Wang, J. Appl. Phys. 76 (3), 1578 (1994).

    Article  CAS  Google Scholar 

  15. T. L. Lee and L. J. Chen, J. Appl. Phys. 75 (4), 2007 (1994).

    Article  CAS  Google Scholar 

  16. J. Y. Cheng and L. J. Chen, J. Appl. Phys. 69 (4), 2161 (1991).

    Article  CAS  Google Scholar 

  17. K. N. Tu and J. W. Mayer, in Thin Films, Interdiffusion and Reactions, edited by J. M. Poate, K.N. Tu, and J.W. Mayer (Wiley, New York, 1978).

    Google Scholar 

  18. M. A. Nicolet and S. S. Lau, in VLSI Electronic, Microstructure Science, edited by N. G. Einapruch and G. B. Larrabee (Academic Press, New York, 1983).

    Google Scholar 

  19. F. M. d’Heurle, J. Mater. Res. 3, 167 (1988).

    Article  Google Scholar 

  20. L. Zhang and D. G. Ivey, J. Appl. Phys. 71, 4314 (1992).

    Article  CAS  Google Scholar 

  21. M. H. Wang and L. J. Chen, Appl. Phys. Lett. 58, 463 (1991).

    Article  CAS  Google Scholar 

  22. W. Y. Hsieh, J. H. Lin, and L. J. Chen, Appl. Phys. Lett. 62, 1088 (1993).

    Article  CAS  Google Scholar 

  23. W. Y. Liang and L. J. Chen, Appl. Phys. Lett. 64, 1224 (1994).

    Article  CAS  Google Scholar 

  24. T. Nakanishi, M. Takeyama, and A. Noya, J. Appl. Phys. 77 (2), 948 (1995).

    Article  CAS  Google Scholar 

  25. R. M. Walser and R. W. Bene, Appl. Phys. Lett. 28, 624 (1976).

    Article  CAS  Google Scholar 

  26. F. M. d’Heurle, J. Mater. Res. 1, 205 (1986).

    Article  Google Scholar 

  27. R. W. Bene, J. Appl. Phys. 61, 1826 (1987).

    Article  CAS  Google Scholar 

  28. U. Gosele and K. N. Tu, J. Appl. Phys. 53, 3252 (1992).

    Article  Google Scholar 

  29. R. Pretorius, Vacuum 41, 1038 (1990).

    Article  CAS  Google Scholar 

  30. R. Pretorius, A. M. Vredenberg, and F. W. Saris, J. Appl. Phys. 70 (7), 3636 (1991).

    Article  CAS  Google Scholar 

  31. Y. Mishima, M. Takei, T. Uematsu, N. Matsumoto, T. Kakehi, U. Wakino, and M. Okabe, J. Appl. Phys. 78 (1), 217.

  32. R. W. Bene, J. Appl. Phys. 61, 1826 (1987).

    Article  CAS  Google Scholar 

  33. Frans Spaepen, Acta Metall. 23, 729 (1975).

    Article  CAS  Google Scholar 

  34. W. A. Miller and G. A. Chadwick, Acta Metall. 15, 609 (1967).

    Google Scholar 

  35. M. C. Inman and H. R. Tipler, Metall. Rev. 8, 105 (1963).

    Article  CAS  Google Scholar 

  36. J. E. E. Baglin, F. M. d’Heurle, W. N. Hammer, and S. Petersson, Nucl. Instrum. Methods 168, 491 (1980).

    Article  CAS  Google Scholar 

  37. F. R. Boer, R. Room, A. R. Miedema, and A. K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  38. R. Pretorius, R. de Reus, A. M. Vredenberg, and F. W. Saria, J. Appl. Phys. 70, 3636 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Wang, W.K. Phase formation sequence induced by deposition temperatures in Nb/Si multilayers. Journal of Materials Research 13, 1373–1378 (1998). https://doi.org/10.1557/JMR.1998.0195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0195

Navigation