Skip to main content
Log in

Synthesis of functional ceramic materials from aqueous solutions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Methods for synthesizing ceramic materials from aqueous solutions at ordinary temperature and pressure are advantageous because of the applicability to making films with wide areas and/or complicated shapes with no requirement of vacuum or high temperature, and because of lower cost. Powder of ZrO2 or LnMeO3 (Ln = La, Nd; Me = Cr, Mn, Fe, Co) perovskite was dissolved in hydrofluoric acid and a solution of fluoro-complex ions was obtained. Boric acid was added to the solution, the fluoride ions were consumed by the formation of BF4 -, and then the fluoro-complex ions were hydrolyzed to ZrO2 or LnMeO3 in order to increase the amount of fluoride ions. A number of synthesized particles of ZrO2 or LnMeO3 were observed on the substrates in scanning electron microscope images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Y. Can, H. Narita, J. Mizusaki, and H. Tagawa, Solid State Ionics 79, 344 (1995).

    Article  CAS  Google Scholar 

  2. G. Periaswami, S. Vana Varamban, S. Rajan Babu, and C. K. Mathews, Solid State Ionics 26, 311 (1988).

    Article  CAS  Google Scholar 

  3. T. M. Miller and V. H. Grassian, J. Am. Chem. Soc. 117, 10,969 (1995).

    Article  CAS  Google Scholar 

  4. D. B. Meadowcroft, Nature (London) 226, 847 (1970).

    Article  CAS  Google Scholar 

  5. A. C. C. Tseung and H. L. Bevan, J. Electroanal. Chem. 45, 429 (1973).

    Article  CAS  Google Scholar 

  6. R. Manoharan and A. K. Shukla, Electrochimica Acta 30, 205 (1985).

    Article  CAS  Google Scholar 

  7. Y. Teraoka, H. M. Zhang, S. Furukawa, and N. Yamazoe, Chem. Lett. 1985, 1743 (1985).

    Article  Google Scholar 

  8. Y. Teraoka, T. Nobunaga, and N. Yamazoe, Chem. Lett. 1988, 503 (1988).

    Article  Google Scholar 

  9. W. Dönitz, G. Dietrich, E. Erdle, and R. Streicher, Int. J. Hydrogen Energy 13, 283 (1988).

    Article  Google Scholar 

  10. Fuel Cell Systems, edited by L. J. M. J. Blomen and M. N. Mugerwa (Plenum Press, New York, 1993), p. 58.

    Google Scholar 

  11. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990).

    Article  CAS  Google Scholar 

  12. T. Yao, T. Inui, and A. Ariyoshi, J. Am. Ceram. Soc. 79, 3329 (1996).

    Article  CAS  Google Scholar 

  13. R. E. Mesmer, K. M. Palen, and C. F. Baes, Jr., Inorg. Chem. 12, 89 (1973).

    Article  CAS  Google Scholar 

  14. T. Yao, A. Ariyoshi, and T. Inui, J. Am. Ceram. Soc. 80, 2441 (1997).

    Article  CAS  Google Scholar 

  15. JCPDS No. 44-333.

  16. JCPDS No. 32-484.

  17. JCPDS No. 37-1493.

  18. JCPDS No. 25-1060.

  19. JCPDS No. 25-565.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, T. Synthesis of functional ceramic materials from aqueous solutions. Journal of Materials Research 13, 1091–1098 (1998). https://doi.org/10.1557/JMR.1998.0150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0150

Navigation