Skip to main content
Log in

Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Layered nanostructures of copper metal and cuprous oxide are electrodeposited from alkaline solutions of Cu(II) lactate at room temperature. No subsequent heat treatment is necessary to effect crystallization. The electrode potential spontaneously oscillates during constant-current deposition. At a fixed current density the oscillation period decreases as either the pH or temperature is increased. The oscillations are periodic in stirred solution, but show period doubling and evidence of quasi-periodic or chaotic behavior in unstirred solution. The phase composition and resistivity of the films can be controlled by varying the applied current density. The resistivity of the films can be varied over ten orders of magnitude. Scanning electron microscopy shows that the films are layered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Switzer, Am. Ceram. Soc. Bull. 66, 1521 (1987).

    CAS  Google Scholar 

  2. R. T. Coyle and J. A. Switzer, “Electrochemical Synthesis of Ceramic Films and Powders,” U. S. Patent No. 4,882,014, issued November, 1989.

  3. J. A. Switzer, J. Electrochem. Soc. 133, 722 (1986).

    Article  CAS  Google Scholar 

  4. R. J. Phillips, M. J. Shane, and J. A. Switzer, J. Mater. Res. 4, 923 (1989).

    Article  CAS  Google Scholar 

  5. R. J. Phillips, T. D. Golden, M. G. Shumsky, and J. A. Switzer, J. Electrochem. Soc. 141, 2391 (1994).

    Article  CAS  Google Scholar 

  6. B. E. Breyfogle, R. J. Phillips, and J. A. Switzer, Chem. Mater. 4, 1356 (1992).

    Article  CAS  Google Scholar 

  7. B. E. Breyfogle, M. G. Shumsky, C-J. Hung, and J. A. Switzer, J. Electrochem. Soc. 143, 2741 (1996).

    Article  CAS  Google Scholar 

  8. T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. Van Leeuwen, and J. A. Switzer, Chem. Mater. 8, 2499 (1996).

    Article  CAS  Google Scholar 

  9. J. A. Switzer, M. J. Shane, and R. J. Phillips, Science 247, 444 (1990).

    Article  CAS  Google Scholar 

  10. J. A. Switzer and T. D. Golden, Adv. Mater. 5, 474 (1993).

    Article  CAS  Google Scholar 

  11. J. A. Switzer, R. P. Raffaelle, R. J. Phillips, C-J. Hung, and T. D. Golden, Science 258, 1918 (1992).

    Article  CAS  Google Scholar 

  12. T. D. Golden, R. P. Raffaelle, and J. A. Switzer, Appl. Phys. Lett. 63, 1501 (1993).

    Article  CAS  Google Scholar 

  13. J. A. Switzer, R. J. Phillips, and T. D. Golden, Appl. Phys. Lett. 66, 819 (1995).

    Article  CAS  Google Scholar 

  14. J. A. Switzer, C-J. Hung, B. E. Breyfogle, M. G. Shumsky, R. Van Leeuwen, and T. D. Golden, Science 264, 1573 (1994).

    Article  CAS  Google Scholar 

  15. R. J. Phillips, T. D. Golden, M. G. Shumsky, E. W. Bohannan, and J. A. Switzer, Chem. Mater. 9, 1670 (1997).

    Article  CAS  Google Scholar 

  16. Y. Matsumoto, M. Fujisue, and J. Hombo, J. Electroanal. Chem. 314, 323 (1991).

    Article  CAS  Google Scholar 

  17. Y. Zhou, R. J. Phillips, and J. A. Switzer, J. Am. Ceram. Soc. 78, 981 (1995).

    Article  CAS  Google Scholar 

  18. J. A. Switzer and R. J. Phillips, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 111.

  19. P. J. Mitchell and G. D. Wilcox, Nature (London) 357, 395 (1992).

    Article  CAS  Google Scholar 

  20. J. Redepenning and J. P. McIsaac, Chem. Mater. 2, 625 (1990).

    Article  CAS  Google Scholar 

  21. Y. Matsumoto, H. Adachi, and J. Hombo, J. Am. Ceram. Soc. 76, 769 (1993).

    Article  CAS  Google Scholar 

  22. J. A. Switzer, C-J. Hung, E. W. Bohannan, M. G. Shumsky, T. D. Golden, and D. C. Van Aken, Adv. Mater. 9, 334 (1997).

    Article  CAS  Google Scholar 

  23. V. T. Agekyan, Phys. Status Solidi A 43, 11 (1977).

    Article  CAS  Google Scholar 

  24. L. O. Grondahl, Science 64, 306 (1926).

    Article  CAS  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), Chap. 11.

  26. J. L. Lin and J. P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993).

    Article  CAS  Google Scholar 

  27. A. Mysyrowicz, E. Benson, and E. Fortin, Phys. Rev. Lett. 77, 896 (1996).

    Article  CAS  Google Scholar 

  28. D. Snoke, Science 273, 1351 (1996).

    Article  CAS  Google Scholar 

  29. R. A. Young, in The Rietveld Method edited by R. A. Young (Oxford University Press, Oxford, 1995), Chap. 1.

    Google Scholar 

  30. D. A. Buttry and M. D. Ward, Chem. Rev. 92, 1355 (1992).

    Article  CAS  Google Scholar 

  31. N. Ikemiya, T. Kubo, and S. Hara, Surf. Sci. 323, 81 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Switzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Switzer, J.A., Hung, CJ., Huang, LY. et al. Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures. Journal of Materials Research 13, 909–916 (1998). https://doi.org/10.1557/JMR.1998.0124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0124

Navigation