Skip to main content
Log in

In situ formation of MoSi2–SiC through reaction of SiO2 or Si3N4 with Mo and carbon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Composite powders of molybdenum silicide–SiC were synthesized by reacting mixtures of (Mo–SiO2 –C), (Mo–Si3N4 –C), and (Mo–SiO2 –Si3N4 –C) powders at 1300 °C. In the (Mo–SiO2 –C) system Mo5Si3 and Mo3Si formed predominantly. MoSi2 formed the major constituent of the reaction product from powder mixtures containing Si3N4. Vapor-solid SiC whiskers formed in the (Mo–SiO2 –C) system. Vapor-liquid-solid whiskers of SiC and Mo5Si3C formed in (Mo–SiO2 –Si3N4–C) and (Mo–Si3N4 –C) systems, respectively. The mechanism of formation of the VLS whiskers and molybdenum silicides was identified as follows: initially a thin layer of Mo2C forms on Mo particle; the Si vapor from thermal decomposition of Si3N4 deposits on the Mo2C surface and forms a droplet of ternary “Nowotny phase” Mo<5Si3C<1; an SiC/Mo5Si3C whisker forms by nucleation and growth from the supersaturated ternary phase; after reaction with the Mo2C layer, the SiO/Si vapor further reacts with Mo particle to form bulk silicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Carter, J.J. Petrovic, R. E. Honnell, and W. S. Gibbs, Ceram. Eng. Sci. Proc. 10, 1121 (1989).

    Article  CAS  Google Scholar 

  2. A. K. Bhattacharya and J. J. Petrovic, J. Am. Ceram. Soc. 74, 2700 (1991).

    Article  CAS  Google Scholar 

  3. K. K. Richardson and D. W. Freitag, Ceram. Eng. Sci. Proc. 12, 1679 (1991).

    Article  CAS  Google Scholar 

  4. Y. L. Leng and E. J. Lavernia, J. Mater. Sci. 29, 2557 (1994).

    Article  Google Scholar 

  5. C. H. Henager, Jr., J. L. Brimhall, and J.P. Hirth, Scripta Metall. Mater. 26, 585 (1992).

    Article  CAS  Google Scholar 

  6. C. H. Henager, Jr., J. L. Brimhall, and J. P. Hirth, Mater. Sci Eng. A155, 109 (1992).

    Article  CAS  Google Scholar 

  7. C. H. Henager, Jr., J. L. Brimhall, J. S. Vetrano, and J. P. Hirth, in Intermetallic Matrix Composites II, edited by D. B. Miracle, D. L. Anton, and J.A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 281.

    Google Scholar 

  8. R. V. Krishnarao and Y. R. Mahajan, J. Mater. Synth. Process. 4, 89 (1996).

    CAS  Google Scholar 

  9. R. V. Krishnarao and Y. R. Mahajan, Mater. Sci. Eng. A214, 161 (1996).

    Article  CAS  Google Scholar 

  10. R. V. Krishnarao and M. M. Godkhindi, Ceram. Inter. 18, 35 (1992).

    Article  CAS  Google Scholar 

  11. R. V. Krishnarao, J. Mater. Sci. 30, 3645 (1995).

    Article  CAS  Google Scholar 

  12. R. V. Krishnarao, J. Mater. Sci. Lett. 12, 1268 (1993).

    Article  CAS  Google Scholar 

  13. G. C. Wei, C. R. Kennedy, and L. Harris, Am. Ceram. Soc. Bull. 63, 1054 (1984).

    CAS  Google Scholar 

  14. J. G. Lee and I.B. Cutler, Am. Ceram. Soc. Bull. 54, 195 (1975).

    CAS  Google Scholar 

  15. R. V. Krishnarao, M. M. Godkhindi, P. G. Mukunda, and M. Chakraborty, J. Am. Ceram. Soc. 74, 2869 (1991).

    Article  CAS  Google Scholar 

  16. M. Saito, S. Nagashima, and A. Kato, J. Mater. Sci. Lett. 11, 373 (1992).

    Article  CAS  Google Scholar 

  17. H. Wiedemeier and M. Singh, J. Mater. Sci. 27, 2974 (1992).

    Article  CAS  Google Scholar 

  18. E. Heikinheimo, A. Kodentsov, J.A. Van Beek, J. T. Klomp, and F. J.J. van Loo, Acta Metall. Mater. 40, S111-119 (1992).

    Article  Google Scholar 

  19. R. V. Krishnarao and M. M. Godkhindi, Ceram. Int. 18, 185 (1992).

    Article  CAS  Google Scholar 

  20. R. V. Krishnarao and M. M. Godkhindi, J. Mater. Sci. 27, 2726 (1992).

    Article  Google Scholar 

  21. H. Wang and G. Fischman, Ceram. Sci. Eng. Proc. 13, 722 (1992).

    Article  CAS  Google Scholar 

  22. J. Li, G. Peng, S. Chen, Z. Chen, and J. Wu, J. Am. Ceram. Soc. 73, 419 (1990).

    Google Scholar 

  23. V. Ye. Ivanov, Ye. P. Nechiporenko, and V. I. Zmiy, Fiz. Met. Metalloved. 17, 94 (1964).

    CAS  Google Scholar 

  24. H. Nowotny, E. Parthe´, R. Kieffer, and F. Benesovsky, Monatsh. Chemie. 85, 255 (1954).

    Article  CAS  Google Scholar 

  25. J. Subrahmanyam and R. Mohanrao, J. Mater. Res. 10, 1226 (1995).

    Article  CAS  Google Scholar 

  26. J. C. Schuster, in Structural Ceramics Joining II, edited by A. J. Moorhead (The American Ceramic Society, Westerville, OH, 1993), p. 43.

    Google Scholar 

  27. C. H. Henager, Jr., J. L. Brimhall, and L. N. Brush, Mater. Sci. Eng. A195, 65 (1995).

    Article  CAS  Google Scholar 

  28. C. H. Henager, Jr., J. L. Brimhall, and J. P. Hirth, in Structural Intermetallics, edited by R. Dorolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal (The Minerals, Metals & Materials Society, Warrendale, PA, 1993), p. 799.

    Google Scholar 

  29. I. Barin, Thermochemical Data of Pure Substances (VCH Publishers, Weinheim, Germany, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnarao, R.V., Ramarao, V.V. & Mahajan, Y.R. In situ formation of MoSi2–SiC through reaction of SiO2 or Si3N4 with Mo and carbon. Journal of Materials Research 12, 3322–3327 (1997). https://doi.org/10.1557/JMR.1997.0437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0437

Navigation