Skip to main content
Log in

Ultrasound driven aggregation and surface silanol modification in amorphous silica microspheres

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Post formed, silica submicrospheres synthesized by Stober’s method have been subjected to a high intensity ultrasound radiation (20 kHz, 100 W/cm2) and their size, morphology, and surface silanol structure modified in situ. The processed silica powders have been characterized by a variety of techniques, such as powder x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), BET nitrogen adsorption, and FT-IR spectroscopy. The silica microspheres formed through an irreversible sol-gel transition have been shown to aggregate by the condensation of interparticle silanols to larger particles under the influence of the shock waves emanating from an imploding cavity. The particle size as a function of sonication time passes through a maximum, suggesting the disintegration of the aggregates on longer exposure to ultrasound radiation. The sonication of dried silica microspheres in an inert dispersant decalin also led to the aggregation of microspheres to a lesser degree, suggesting the deactivation of surface silanols. Infrared spectroscopic investigations suggest a disruption of the hydrogen bonded network of surface silanols. The observed morphological changes have been discussed in terms of direct effect of cavitation on well-formed spheres rather than changes in growth mechanism and capture of primary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ultrasound: Its Chemical, Physical and Biological Effects, edited by K. S. Suslick (VCH Publishers, New York, Weinheim, 1988).

    Google Scholar 

  2. S. V. Lye and C. M. R. Low, Ultrasound in Synthesis (Springer-Verlag, New York, 1989).

    Google Scholar 

  3. Current Trends in Sonochemistry, edited by C. J. Price (Royal Society of Chemistry, 1992).

  4. A. E. Greene, J.P. Lannsard, J.L. Luche, and C. J. Petrier, J. Org. Chem. 49, 931 (1984).

    Article  CAS  Google Scholar 

  5. J. Lindley, T. J. Mason, and J. P. Lorimer, Ultrasonics 25, 45 (1987).

    Article  CAS  Google Scholar 

  6. P. Boudjouk, in High Energy Processes in Organometallic Chemistry, edited by K. S. Suslick, ACS Symposium Series 333, American Chemical Society, Washington, DC (1987).

    Google Scholar 

  7. G. J. Price, Adv. Sonochemistry 1, 231 (1990).

    CAS  Google Scholar 

  8. K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, Nature 353, 414 (1991).

    Article  CAS  Google Scholar 

  9. R. Bellisent, G. Galli, T. Hyeon, S. Magazu, D. Majolino, P. Miggliardo, and K. S. Suslick, Physica Scripta T57, 79 (1995).

    Article  Google Scholar 

  10. S. J. Doktycyz and K. S. Suslick, Science 247, 1067 (1990).

    Article  Google Scholar 

  11. X. Cao, Yu. Koltypin, G. Kataby, R. Prozorov, and A. Gedanken, J. Mater. Res. 10, 2952 (1995).

    Article  CAS  Google Scholar 

  12. Yu. Koltypin, G. Katabi, X. Cao, R. Prozorov, and A. Gedanken, J. Non-Cryst. Solids 201, 159 (1996).

    Article  CAS  Google Scholar 

  13. W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  14. R. K. Iler, The Chemistry of Silica (Wiley, New York, 1955).

    Google Scholar 

  15. I. Tsuchiya, J. Phys. Chem. 86, 4107 (1982).

    Article  CAS  Google Scholar 

  16. L. C. Klein, Ann. Rev. Mater. Sci. 15, 227 (1985).

    Article  CAS  Google Scholar 

  17. G. H. Bogush, M. A. Tracy, and C. F. Zukoskiiv, J. Non-Cryst. Solids 104, 95 (1988).

    Article  CAS  Google Scholar 

  18. A. P. Philips, M. P. B. van Bruggen, and C. Pathmamanoharan, Langmuir 10, 92 (1994).

    Article  Google Scholar 

  19. N. Enomoto, Shingo Maruyama, and Z. Nakagawa, J. Mater. Res. 12, 1410 (1997).

    Article  CAS  Google Scholar 

  20. W. Lauterborn and A. Vogel, Ann. Rev. Fluid Mech. 16, 223 (1984).

    Article  Google Scholar 

  21. L. L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Article  CAS  Google Scholar 

  22. G. J. Price, D. J. Norris, and P. J. West, Macromolecules 25, 6447 (1992).

    Article  CAS  Google Scholar 

  23. A. Burneau, A. Barres, J. P. Gallas, and J. C. Lavalley, Langmuir 6, 1364 (1990).

    Article  CAS  Google Scholar 

  24. J. Phalippou, T. Woignier, and J. Zarcycki, in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L. L. Hench and D.R. Ulrich (Wiley, New York, 1984).

    Google Scholar 

  25. P. Hoffman and E. Knozinger, Surf. Sci. 188, 181 (1987).

    Article  Google Scholar 

  26. B. A. Morrow and A. J. McFarlan, Langmuir 7, 1695 (1991).

    Article  CAS  Google Scholar 

  27. S. Kondo, M. Muroya, and K. Fujii, Bull. Chem. Soc. Jpn. 47, 553 (1974).

    Article  CAS  Google Scholar 

  28. I. S. Chuang and G. E. Maciel, J. Am. Chem. Soc. 118, 401 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S., Koltypin, Y. & Gedanken, A. Ultrasound driven aggregation and surface silanol modification in amorphous silica microspheres. Journal of Materials Research 12, 3271–3277 (1997). https://doi.org/10.1557/JMR.1997.0430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0430

Navigation