Skip to main content
Log in

Linear free energy relationships in solid state diffusion processes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents a new form of linear free energy (LFE) relationship for diffusive mass transport in oxides and other binary compounds. The relationship applies to a family of related compounds. For a given substance, i, solid-state diffusivity is related to the equilibrium constant Ki or the free energy of transformation, \(G_i^0\), via a transfer coefficient γ, through the expression ln Di = γ ln Ki + constant \(( = - \gamma \Delta G_i^0/{\text{R}}{T_p} + {\text{constant)}}\). The system investigated here is the series of suboxide intermediates of vanadium pentoxide formed during temperature-programmed synthesis of vanadium nitride. The value of γ for this series is 0.27. The diffusivity values are determined by fitting a mathematical model to the experimental data. Diffusivity data are presented graphically in contour diagrams which correlate pre-exponential values, activation energies, particle sizes, and heating rates used in the temperature-programmed syntheses. An Evans–Polanyi linear relation, \(\Delta {E_i} = \alpha \Delta (\Delta H_i^0)\), relating activation energy, Ei, to enthalpy change of transformation, \(\Delta H_i^0\), via a transfer coefficient α = 0.53, is also shown to exist for the above system. The discrepancy between α and γ is resolved by using the Horiuti concept of the stoichiometric number of the rate-determining step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions (John Wiley, New York, 1963), Chap. 6.

  2. J. N. Brönsted and K. J. Pedersen, Z. Phys. Chem. 108, 185 (1924).

    Google Scholar 

  3. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937); L. P. Hammett, Trans. Faraday Soc. 34, 151 (1938).

    Google Scholar 

  4. R. W. Taft, J. Am. Chem. Soc. 75, 4231 (1953).

    Article  CAS  Google Scholar 

  5. W. C. Conner, Jr. and J. A. Schwarz, Chem. Eng. Commun. 55, 129 (1987).

    Article  CAS  Google Scholar 

  6. M. Kraus, Adv. Catal. 17, 75 (1967).

    CAS  Google Scholar 

  7. M. G. Evans and N. P. Polanyi, Trans. Faraday Soc. 34, 11 (1938).

    Article  CAS  Google Scholar 

  8. R. Kapoor and S. T. Oyama, J. Mater. Res. 12, 467 (1997).

    Article  CAS  Google Scholar 

  9. R. Kapoor and S. T. Oyama, J. Solid State Chem. 99, 303 (1992).

    Article  CAS  Google Scholar 

  10. S. T. Oyama, J. C. Schlatter, J. E. Metcalfe, III, and J. M. Lambert, Jr., Ind. Eng. Chem. Res. 27, 1639 (1988).

    Article  CAS  Google Scholar 

  11. Standard TPR theory predicts peak temperature, Tp, to be related to heating rate, ß, by the equation 2 ln Tp − ln ß = E/RTp+ const. The value of E can be determined from the slope of a plot of 2 ln Tp − ln ß vs \(T_p^{ - 1}\). The data sets here can be obtained by conducting the experiments at different heating rates. N. W. Hurst, S. J. Gentry, A. Jones, and B. D. McNicol, Catal. Rev. Sci. Eng. 24, 233 (1982).

  12. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973); D. R. Stull and H. Prophet, JANAF Thermochemical Tables (NBS, Washington, DC, 1971).

    Google Scholar 

  13. M. Boudart and G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions (Princeton University Press, Princeton, NJ, 1984).

    Book  Google Scholar 

  14. J. Horiuti, Ann. N. Y. Acad. Sci. 213, 5 (1973).

    Article  CAS  Google Scholar 

  15. J. Horiuti, J. Res. Inst. Catal., Hokkaido University 1, 8 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, R., Oyama, S.T. Linear free energy relationships in solid state diffusion processes. Journal of Materials Research 12, 474–479 (1997). https://doi.org/10.1557/JMR.1997.0069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0069

Navigation