Skip to main content
Log in

Chemical analysis in YBa2Cu3O7−x melt-textured samples

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A melt-textured process that involves the peritectic reaction Y2BaCuO5 + liquid → YBa2Cu3O7−x is the best method to develop bulk YBa2Cu3O7−x superconductors with improved transport and magnetic properties. Up to this point, information regarding cationic stoichiometry in textured samples is rather lacking in the literature. In this work, wavelength dispersive analysis (WDS) at a microscopic level and energy dispersive x-ray analysis (EDX) at a nanoscopic level were used to characterize the chemical composition of YBa2Cu3O7−x textured samples. The melt-textured process generally modifies the sample stoichiometry. Thus, a textured sample composition cannot be directly obtained even from an accurate knowledge of the starting composition. We have shown that WDS can be used to determine the overall composition and therefore the Y2BaCuO5 content in these samples. It is also a powerful method to control chemical homogeneity and to investigate chemical modifications occurring during processing, especially those resulting from interaction between melt and substrate. The exact nature of YBa2Cu3O7−x nucleation and crystallization still presents many unsolved questions. Nanoanalysis allowed us to study Y2BaCuO5 dissolution in the peritectic liquid, and we have confirmed that it takes place exclusively by removing yttrium from Y2BaCuO5 particles. We have also shown the existence of an yttrium-rich liquid phase, i.e., with a higher yttrium concentration that can be deduced from the equilibrium phase diagram. A liquid phase having a composition close to that of YBa2Cu3O7−x can be inferred from this work. This suggests that YBa2Cu3O7−x nucleation and crystallization take place homogeneously from this liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Murakami, Supercond. Sci. Technol. 5, 185 (1992).

    Article  CAS  Google Scholar 

  2. K. Salama and D. F. Lee, Supercond. Sci. Technol. 7, 177 (1994).

    Article  CAS  Google Scholar 

  3. M. Gervais, P. Odier, and J. P. Coutures, Mater. Sci. Eng. B 8, 287 (1991).

    Article  Google Scholar 

  4. P. J. McGinn, W. Chen, N. Zhu, C. Varanasi, L. Tan, and D. Balkin, Physica C 183, 51 (1991).

    Article  CAS  Google Scholar 

  5. J. C. L. Chow and P. C. W. Fung, Chem. Phys. Lett. 223, 185 (1994).

    Article  CAS  Google Scholar 

  6. A. Goyal, K. B. Alexander, D. M. Kroeger, P. D. Funkenbush, and S. J. Burns, Physica C 210, 197 (1993).

    Article  CAS  Google Scholar 

  7. C. A. Bateman, L. Zhang, H. M. Chen, and M. P. Harmer, J. Am. Ceram. Soc. 75, 1281 (1992).

    Article  CAS  Google Scholar 

  8. N. Pellerin, P. Odier, P. Simon, and D. Chateigner, Physica C 222, 133 (1994).

    Article  CAS  Google Scholar 

  9. N. Pellerin, F. J. Gotor, and P. Odier, unpublished data.

  10. B. J. Chen, M. A. Rodriguez, S. T. Misture, and R. L. Snyder, Physica C 217, 367 (1993).

    Article  CAS  Google Scholar 

  11. T. Izumi, Y. Nakamura, and Y. Shiohara, J. Cryst. Growth 128, 757 (1993).

    Article  CAS  Google Scholar 

  12. Y. Nakamura, K. Furuya, T. Izumi, and Y. Shiohara, J. Mater. Res. 9, 1350 (1994).

    Article  CAS  Google Scholar 

  13. G. J. Schmitz, J. Laakmann, Ch. Wolters, and S. Rex, J. Mater. Res. 8, 2774 (1993).

    Article  CAS  Google Scholar 

  14. J. Ayache, P. Odier, and N. Pellerin, Supercond. Sci. Technol. 7, 655 (1994).

    Article  CAS  Google Scholar 

  15. J. S. Kim and D. R. Gaskell, J. Am. Ceram. Soc. 77, 753 (1994).

    Article  CAS  Google Scholar 

  16. G. Krabbes, W. Bieger, U. Wiesner, M. Ritschel, and T. Teresink, J. Solid State Chem. 103, 420 (1993).

    Article  CAS  Google Scholar 

  17. B. J. Lee and D. N. Lee, J. Am. Ceram. Soc. 74, 78 (1991).

    Article  CAS  Google Scholar 

  18. W. Wong-Ng and L. P. Cook, J. Am. Ceram. Soc. 77, 1883 (1994).

    Article  CAS  Google Scholar 

  19. C. J. Kim, K. B. Kim, D. Y. Won, and G. W. Hong, Physica C 228, 351 (1994).

    Article  CAS  Google Scholar 

  20. S. Gauss, M. Schmelz, H. Bestgen, and W. Assmus, Physica C 235–240, 461 (1994).

    Article  Google Scholar 

  21. K. B. Alexander, A. Goyal, D. M. Kroeger, V. Selvamanickam, and K. Salama, Phys. Rev. B 45, 5622 (1992).

    Article  CAS  Google Scholar 

  22. Z. L. Wang, A. Goyal, and D. M. Kroeger, Phys. Rev. B 47, 5373 (1993).

    Article  CAS  Google Scholar 

  23. A. P. Mackenzie, Physica C 178, 365 (1991).

    Article  CAS  Google Scholar 

  24. P. Odier, F. J. Gotor, N. Pellerin, R. P. S. M. Lobo, J. Ayache, H. Noel, J. P. Chaminade, and G. Collin, unpublished.

  25. F. J. Gotor, A. R. Fert, P. Odier, and N. Pellerin, J. Am. Ceram. Soc. 78, 2113 (1995).

    Article  CAS  Google Scholar 

  26. N. Pellerin, M. Gervais, and P. Odier, J. Mater. Res. 7, 558 (1992).

    Article  CAS  Google Scholar 

  27. R. Miletich, M. Murakami, A. Preisinger, and H. W. Weber, Physica C 209, 415 (1993).

    Article  CAS  Google Scholar 

  28. R. L. Meng, L. Gao, P. Gautier-Picard, D. Ramirez, Y. Y. Sun, and C. W. Chu, Physica C 232, 337 (1994).

    Article  CAS  Google Scholar 

  29. F. J. Gotor, N. Pellerin, P. Odier, E. Cazy, J. P. Bonnet, A. R. Fert, and J. Ayache, Physica C 247, 252 (1995).

    Article  CAS  Google Scholar 

  30. N. Pellerin, M. Gervais, and P. Odier, in Layered Superconductors: Fabrication, Properties and Applications, edited by D. T. Shaw, C. C. Tsuei, T. R. Schneider, and Y. Shiohara (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 537.

  31. A. Erb, T. Traulsen, and G. Müller-Vogt, Physica C 237, 487 (1994).

    Google Scholar 

  32. T. L. Aselage, Physica C 233, 292 (1994).

    Article  CAS  Google Scholar 

  33. M. L. Griffith, R. T. Huffman, and J. W. Halloran, J. Mater. Res. 9, 1633 (1994).

    Article  CAS  Google Scholar 

  34. Z. L. Goyal, A. Goyal, and D. M. Kroeger, Phys. Rev. B 47, 5373 (1993).

    Article  Google Scholar 

  35. E. Grantscharova and G. Desgardin, Cryst. Res. Technol. 29, 3 (1994).

    Article  CAS  Google Scholar 

  36. W. Assmus and W. Schmidbauer, Supercond. Sci. Technol. 6, 555 (1993).

    Article  CAS  Google Scholar 

  37. D. H. St. John, Acta Metall. Mater. 38, 631 (1990).

    Google Scholar 

  38. S. Nagaya, M. Miyajima, I. Hirabayashi, Y. Shiohara, and S. Tanaka, IEEE Trans. Magn. 27, 1487 (1991).

    Article  CAS  Google Scholar 

  39. J. R. Olive, W. H. Hofmeister, R. J. Bayuzick, G. Carro, J. P. McHugh, R. H. Hopkins, M. Vlasse, J. K. R. Weber, R. C. Nordine, and M. McElfresh, J. Mater. Res. 9, 1 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotor, F.J., Ayache, J., Pellerin, N. et al. Chemical analysis in YBa2Cu3O7−x melt-textured samples. Journal of Materials Research 12, 338–346 (1997). https://doi.org/10.1557/JMR.1997.0049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0049

Navigation