Skip to main content
Log in

Optical emission spectroscopy during the bias-enhanced nucleation of diamond microcrystals by microwave plasma chemical vapor deposition process

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microwave plasma chemical vapor deposition (MWPCVD) process has been used to grow diamond thin films on silicon substrates from CH4 –H2 gas mixture. Bias-enhanced nucleation (BEN) pretreatment has been used to increase the density of diamond nuclei. Various species in the CH4 –H2 plasma have been identified using optical emission spectroscopy (OES), and their effect on the film microstructure has been studied. During the pretreatment process the emission intensities of CH, CH1, C2, H, and H2* species have been found to increase significantly for a negative dc bias voltage |VB| . 60 V. The higher concentration of excited species and the associated effects play a significant role in the growth process. A very thin layer of a-C containing predominant sp3 bonded carbon species in the initial stages of the growth is found to be present in these films. The microstructure of the films has been found to be very sensitive to the biasing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jiang, E. Boettger, M. Paul, and C-P. Klages, Appl. Phys. Lett. 65 (12), 1519 (1994).

    Article  CAS  Google Scholar 

  2. M. Ihara, H. Komiyama, and T. Okubo, Appl. Phys. Lett. 65 (9), 192 (1994).

    Article  Google Scholar 

  3. H. C. Barshilia, B. R. Mehta, and V. D. Vankar, J. Mater. Res. 11, 1019 (1996).

  4. Y. S. Park, S. H. Kim, and J.W. Lee, Jpn. J. Appl. Phys. 33 (11), 6320 (1994).

  5. Z. Feng, K. Komvopoulos, I. G. Brown, and D. B. Bogy, J. Mater. Res. 9, 2148 (1994).

  6. J. J. Dubray, C. G. Pantano, M. Meloncelli, and E. Bertran, J. Vac. Sci. Technol. A 9 (6), 3012 (1991).

  7. P. N. Barnes and R. L. C. Wu, Appl. Phys. Lett. 62 (1), 37 (1993).

  8. L. Chow, A. Horner, H. Sakouri, B. Roughani, and S. Sundaram, J. Mater. Res. 7, 1606 (1992).

  9. R. J. Meilunas, R. P. H. Chang, S. Liu, and M. M. Kappes, Appl. Phys. Lett. 59 (26), 3461 (1991).

  10. T. Hartnett, R. Miller, D. Montanari, C. Willingham, and R. Tustison, J. Vac. Sci. Technol. A 8 (3), 2129 (1990).

  11. S. Yugo, T. Kanai, T. Kimura, and T. Muto, Appl. Phys. Lett. 58 (10), 1036 (1991).

  12. S. Yugo, T. Kanai, and T. Kimura, Diamond Relat. Mater. 1, 388 (1992).

  13. M. Katoh, M. Aoki, and H. Kawarada, Jpn. J. Appl. Phys. 33, (2A), L194 (1994).

  14. S. D. Wolter, J. T. Glass, and B. R. Stoner, Thin Solid Films 261, 4 (1995).

  15. B. W. Sheldon, R. Csencsits, J. Rankin, R. E. Boekenhauer, and Y. Shigesato, J. Appl. Phys. 75, (10), 5001 (1994).

  16. F. Arezzo, N. Zacchetti, and W. Zhu, J. Appl. Phys. 75 (10), 5375 (1994).

  17. S. D. Wolter, B. R. Stoner, J. T. Glass, P. E. Ellis, D. S. Buhaenko, C. E. Jenkins, and P. Southworth, Appl. Phys. Lett. 62 (11), 1215 (1993).

  18. B. R. Stoner, B. E. Williams, S. D. Wolter, K. Nishimura, and J.T. Glass, J. Mater. Res. 7, 257 (1992).

  19. F. S. Lauten, Y. Shigesato, and B. W. Sheldon, Appl. Phys. Lett. 65 (2), 210 (1994).

  20. B. R. Stoner, G. H. M. Ma, S. D. Wolter, and J.T. Glass, Phys. Rev. B. 45 (19), 11 067 (1992).

  21. X. Jiang, C-P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, Appl. Phys. Lett. 62 (26), 3438 (1993).

  22. J. Narayan, A. R. Srivatsa, M. Peters, S. Yokota, and K. V. Ravi, Appl. Phys. Lett. 53 (19), 1823 (1988).

  23. L. Chang, T. S. Lin, J. L. Chen, and F. R. Chen, Appl. Phys. Lett. 62 (26), 3444 (1993).

  24. S. D. Wolter, M. T. McClure, J. T. Glass, and B. R. Stoner, Appl. Phys. Lett. 66 (21), 2810 (1995).

  25. B. R. Stoner and J. T. Glass, Appl. Phys. Lett. 60 (6), 698 (1992).

  26. R. Kohl, C. Wild, N. Herres, P. Koidl, B. R. Stoner, and J. T. Glass, Appl. Phys. Lett. 63 (13), 1792 (1993).

  27. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, Appl. Phys. Lett. 66 (23), 3117 (1995).

  28. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, Appl. Phys. Lett. 66 (24), 3287 (1995).

  29. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, A. Tebano, and P. Paroli, Appl. Phys. Lett. 62 (8), 879 (1993).

  30. M. Marinelli, E. Milani, M. Montuori, A. Paoletti, A. Tebano, and P. Paroli, J. Appl. Phys. 76 (10), 5702 (1994).

  31. Y. Muranaka, H. Yamashita, and H. Miyadera, J. Mater. Sci. 26, 3235 (1991).

  32. Y. Muranaka, H. Yamashita, K. Sato, and H. Miyadera, J. Appl. Phys. 67 (10), 6247 (1990).

  33. J. A. Mucha, D. L. Flamm, and D. E. Ibbotson, J. Appl. Phys. 65 (9), 3448 (1989).

  34. F. J. Kampas, J. Appl. Phys. 54 (5), 2276 (1983).

  35. R. Manukonda, R. Dillon, and T. Furtak, J. Vac. Sci. Technol. A 13 (3), 1150 (1995).

  36. H. Tahara, K. Minami, A. Murai, T. Yasui, and T. Yoshikawa, Jpn. J. Appl. Phys. 34 (4A), 1972 (1995).

  37. S. W. Reeve and W. A. Weimer, J. Vac. Sci. Technol. A 13 (2), 359 (1995).

  38. A. Pastol and Y. Catherine, J. Phys. D: Appl. Phys. 23, 799 (1990).

  39. J. Wagner, C. Wild, F. Pohl, and P. Koidl, Appl. Phys. Lett. 48 (2), 106 (1986).

  40. S. W. Reeve and W. A. Weimer, Thin Solid Films 236, 91 (1993).

  41. J. W. Coburn and M. Chen, J. Appl. Phys. 51 (6), 3134 (1980).

  42. W. Lochte-Holtgreven, Plasma Diagnostics (North-Holland Publishing Company, Amsterdam, 1968), p. 181.

  43. Y. Shigesato, R. E. Boekenhauer, and B. W. Sheldon, Appl. Phys. Lett. 63 (3), 314 (1993).

  44. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950), p. 519.

  45. R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra, 4th ed. (Chapman and Hall, London, 1976), pp. 83,169.

  46. A. R. Striganov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, New York, 1968), pp. 73,892.

  47. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 112,140,240.

  48. Y. Mitsuda, Y. Kojima, T. Yoshida, and K. Akashi, J. Mater. Sci. 22, 1557 (1987).

  49. G. Herzberg, Molecular Spectra and Molecular Structure, III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, NJ, 1967), p. 609.

  50. N. Savvides, J. Appl. Phys. 59 (12), 4133 (1986).

  51. K. M. McNamara, B. E. Williams, K. K. Gleason, and B. E. Scruggs, J. Appl. Phys. 76 (4), 2466 (1994).

  52. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  53. W. A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  54. M. Frenklach, J. Appl. Phys. 65 (12), 5142 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barshilia, H.C., Mehta, B.R. & Vankar, V.D. Optical emission spectroscopy during the bias-enhanced nucleation of diamond microcrystals by microwave plasma chemical vapor deposition process. Journal of Materials Research 11, 2852–2860 (1996). https://doi.org/10.1557/JMR.1996.0360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0360

Navigation