Skip to main content
Log in

Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dispersions of nanometer-sized In particles embedded in an Al matrix (10 wt. % In) have been synthesized by ball milling of a mixture of Al and In powders. The as-milled product was characterized by using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HREM), respectively. It was found that In and Al are pure components immiscible with each other, with nanometer-sized In particles dispersively embedded in the Al matrix. The melting behavior of In particles was investigated by means of differential scanning calorimeter (DSC). The calorimetric measurements indicate that both the melting point and the melting enthalpy of the In nanoparticles decrease with increasing milling time, or refinement of the In particles. Compared to its bulk melting temperature, a melting point depression of 13.4 K was observed when the mean grain size of In is 15 nm, and the melting point depression of In nanoparticles is proportional to the reciprocal of the mean grain size. The melting enthalpy depression was interpreted according to the two-state concept for the nanoparticles. Melting of the interface was deduced to be an exothermal process due to its large excess energy/volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. Buffat and J-P. Borel, Phys. Rev. A 13, 2287 (1976) and references therein.

    Article  CAS  Google Scholar 

  2. L. L. Boyer, Phase Trans. 5, 1 (1985) and references therein.

  3. G. L. Allen, R.A. Bayles, W.W. Gile, and W.A. Jesser, Thin Solid Films 144, 297 (1986).

  4. J. Däges, H. Gleiter, and J. H. Perepezko, Phys. Lett. 119, 79 (1986).

  5. C. J. Rossouw and S.F. Donnelly, Phys. Rev. Lett. 55, 2960 (1985).

  6. K. Sasaki and H. Saka, Philos. Mag. A 63, 1207 (1991).

  7. H. Saka, Y. Nishikawa, and T. Imura, Philos. Mag. A 57, 895 (1988).

  8. D. L. Zhang and B. Cantor, Acat Metall. Mater. 39, 1595 (1991).

  9. L. Gråbæk, J. Bohr, E. Johnson, A. Johansen, L. Sarholt-Kristensen, and H.H. Anderson, Phys. Rev. Lett. 64, 934 (1990).

  10. F. A. Lindemann, Z. Phys. 11, 609 (1910).

  11. M. Born, J. Chem. Phys. 7, 591 (1939).

  12. P. R. Couchman and W.A. Jesser, Philos. Mag. 35, 787 (1977).

  13. R. W. Cahn, Nature 323, 668 (1986).

  14. H. J. Fecht, Nature 356, 133 (1992).

  15. F. G. Shi, J. Mater. Res. 9, 1307 (1994).

  16. G. L. Allen, W.W. Gile, and W.A. Jesser, Acta Metall. 28, 1695 (1980).

  17. T. Ohashi, K. Kuroda, and H. Saka, Philos. Mag. B 65, 1041 (1992).

  18. J. J. Metois and J. C. Heyraud, Surf. Sci. 128, 334 (1989).

  19. G. D. T. Spiller, Philos. Mag. A 46, 535 (1982).

    Article  CAS  Google Scholar 

  20. K. M. Unruh, J.F. Sheehan, T. E. Huber, and C. A. Huber, Nanostr. Mater. 3, 425 (1993).

  21. K. M. Unruh, T. E. Huber, and C. A. Huber, Phys. Rev. B 48, 9021 (1993).

  22. J. S. C. Jang and C. C. Koch, J. Mater. Res. 5, 325 (1990).

  23. C. C. Koch, J.S. C. Jang, and S. S. Gross, J. Mater. Res. 4, 557 (1989).

  24. D. Turnbull, J.S. C. Jang, and C. C. Koch, J. Mater. Res. 5, 1731 (1990).

  25. K. M. Unruh and J. F. Sheehan, Nanophase Materials (Kluwer Acad. Pub., Dordrecht, The Netherlands, 1994), pp. 341–547.

  26. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974).

  27. H. W. Sheng, J. Xu, X. K. Sun, K. Lu, and Z. Q. Hu, Nanostr. Mater. 5, 517 (1995).

  28. H. W. Sheng, G. Ren, L. M. Peng, Z.Q. Hu, and K. Lu, unpublished research.

  29. T. B. Massalski, 1986, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).

  30. J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, and W. L. Johnson, Nanostr. Mater. 2, 407 (1993).

  31. S. Bahk and M. F. Ashby, Scripta Metall. 9, 129 (1975).

  32. K. Uenishi, H. Kawaguchi, and K. F. Kobayashi, J. Mater. Sci. 29, 4860 (1994).

  33. D. Camel, L. N. Eusathopoulos, and P. Desré, Acta Metall. 28, 239 (1980).

  34. R. Lück and K. Lu, J. Mater. Sci. Technol. 11, 157 (1995).

  35. P. Boolchand and C. C. Koch, J. Mater. Res. 7, 2876 (1992).

  36. J. K. D. S. Jayanetti, S. M. Heald, and Z. Tan, Phys. Rev. B 47, 2465 (1993).

  37. H. Gleiter, Prog. Mater. Sci. 33, 223 (1984).

    Article  Google Scholar 

  38. R. Birringer, U. Herr, and H. Gleiter, Trans. Jpn. Inst. Met. Suppl. 27, 43 (1986).

  39. J. A. Eastman and M. R. Fitzsimmons, J. Appl. Phys. 77, 522 (1995).

  40. K. Lu, R. Lück, and B. Predel, Acta Metall. Mater. 7, 2303 (1994).

  41. K. Lu, Phys. Rev. B 51, 18 (1995).

    Article  CAS  Google Scholar 

  42. J. H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

  43. H. J. Fecht, Acta Metall. Mater. 38, 1927 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, H.W., Xu, J., Yu, L.G. et al. Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling. Journal of Materials Research 11, 2841–2851 (1996). https://doi.org/10.1557/JMR.1996.0359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0359

Navigation