Skip to main content
Log in

Microstructures and electrical resistivities of the RuO2 electrode on SiO2/Si annealed in the oxygen ambient

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrical resistivity property of RuO2 thin films grown on the SiO2/Si substrate by reactive dc sputtering was examined in terms of microstructure using x-ray diffraction and cross-sectional transmission electron microscopy. As the samples were annealed in the oxygen ambient over the temperature range 300-700 °C, the resistivity decreased from 270 to 90 mVcm with increasing annealing temperature. When heat treatment was performed below 500 °C, the strain which accumulated in the RuO2 layer during deposition was released without significant increase in grain size. It is thought that below 500 °C improvement in the crystallinity plays an important role in the variation of the resistivity. Although a considerable amount of growth of RuO2 grains was achieved, the columnar structure of the RuO2 layer in the as-deposited sample remained unchanged even after annealing at 700 °C. The resistivity improvement above 500 °C was driven mainly by the grain boundary annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Auciello, K. D. Gifford, and A. I. Kingon, Appl. Phys. Lett. 64, 2873 (1994).

    Article  CAS  Google Scholar 

  2. R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, Appl. Phys. Lett. 64, 2673 (1994).

  3. H. N. Al-Shareef, K. R. Bellur, O. Auciello, and A. I. Kingon, Integrated Ferroelectrics 8, 151 (1995).

  4. J. O. Olowolafe, R. E. Jones, Jr., A. C. Campbell, R. I. Hedge, C. J. Mogab, and R. B. Gregory, J. Appl. Phys. 73, 1764 (1993).

  5. G. R. Fox, S. Trolier-McKinstry, S.B. Krupanidhi, and L.M. Casas, J. Mater. Res. 10, 1508 (1995).

  6. K. H. Park, C. Y. Kim, Y. W. Jeong, H.J. Kwon, K.Y. Kim, J.S. Lee, and S.T. Kim, J. Mater. Res. 10, 1790 (1995).

  7. M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, and D. Brasen, J. Electrochem. Soc. 132, 2077 (1985).

  8. E. Kowala, F. C.T. So, E. T-S. Pan, and M-A. Nicolet, Appl. Phys. Lett. 50, 854 (1987).

  9. L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, Appl. Phys. Lett. 50, 1879 (1987).

  10. L. Krusin-Elbaum and M. Wittmer, J. Electrochem. Soc. 135, 2610 (1988).

  11. K. Takemura, T. Sakuma, and Y. Miyasaka, Appl. Phys. Lett. 64, 2967 (1994).

  12. C. Kwok, D. P. Vijay, S.B. Desu, N. R. Parikh, and E. A. Hill, in Proc. 4th Int. Symp. on Integrated Ferroelectrics (International Symposium on Integrated Ferroelectrics, Colorado Springs, CO, 1992), p. 412.

  13. J. S. Lee, Y.W. Jeong, and S. T. Kim, Micros. Res. Technol. 33, 490 (1996).

  14. J. Si and S. B. Desu, J. Mater. Res. 8, 2644 (1993).

  15. JCPDS card no. 40-1290.

  16. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 281.

  17. P. A. Cox, The Electronic Structure and Chemistry of Solids (Oxford University Press, Oxford, 1986), p. 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Kwon, H.J., Jeong, Y.W. et al. Microstructures and electrical resistivities of the RuO2 electrode on SiO2/Si annealed in the oxygen ambient. Journal of Materials Research 11, 2681–2684 (1996). https://doi.org/10.1557/JMR.1996.0337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0337

Navigation