Skip to main content
Log in

Microstructural development in sol-gel derived lead zirconate titanate thin films: The role of precursor stoichiometry and processing environment

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The role of precursor stoichiometry and local firing environment on the microstructural development of sol-gel derived lead zirconate titanate (PZT) thin films was investigated. Typically, excess Pb is added to films to compensate for PbO volatilization during heat treatment. Here, it is shown that the use of stoichiometric precursors with either a PbO atmosphere powder or a PbO overcoat during the crystallization heat treatment is an attractive and viable alternative method for control of film stoichiometry. Using these approaches, we have fabricated single phase perovskite thin films with microstructures and electrical properties (Pr ∼ 36 μC/cm2 and Ec ∼ 45 kV /cm) comparable to those of films using optimized solution chemistries and excess Pb additions. The potential advantage of increasing PbO partial pressure, or activity, during firing versus excess Pb additions is discussed from the standpoint of a proposed crystallization scenario based on the kinetic competition between Pb loss and the nucleation and growth rates of the perovskite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dimos, Ann. Rev. Mater. Sci. 25, 273 (1995).

    Article  CAS  Google Scholar 

  2. A. P. Wilkinson, J.S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, Chem. Mater. 6 (6), 750 (1994).

    Article  CAS  Google Scholar 

  3. C. Lakeman, Ph.D. dissertation, University of Illinois at Urbana-Champaign (1994).

  4. A. Seifert, F. F. Lange, and J.S. Speck, J. Mater. Res. 10, 680 (1995).

    Article  CAS  Google Scholar 

  5. T. Tani, Ph.D. dissertation, University of Illinois at Urbana-Champaign (1994).

  6. S. Chen and I. Chen, J. Am. Ceram. Soc. 77 (9), 2332 (1994).

    Article  CAS  Google Scholar 

  7. S. Chen and I. Chen, J. Am. Ceram. Soc. 77 (9), 2337 (1994).

    Article  CAS  Google Scholar 

  8. K. G. Brooks, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, J. Mater. Res. 9, 2540 (1994).

    Article  CAS  Google Scholar 

  9. D. K. Leung, C. J. Chang, M. Rühle, and F. F. Lange, J. Am. Ceram. Soc. 74 (11), 2786 (1991).

    Article  CAS  Google Scholar 

  10. M. L. Balmer, F. F. Lange, and C. G. Levi, J. Am. Ceram. Soc. 75 (4), 946 (1992).

    Article  CAS  Google Scholar 

  11. A H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, J. Am. Ceram. Soc. 74 (6), 1455 (1991).

    Article  CAS  Google Scholar 

  12. R. L. Holman and R. M. Fulrath, J. Appl. Phys. 44 (12), 5227 (1973).

    Article  CAS  Google Scholar 

  13. D. R. Clarke, Ann. Rev. Mater. Sci. 13, 191 (1983).

    Article  CAS  Google Scholar 

  14. T. Tani and D. A. Payne, J. Am. Ceram. Soc. 77 (5), 1242 (1994).

    Article  CAS  Google Scholar 

  15. G. S. Snow, J. Am. Ceram. Soc. 56 (2), 91 (1973).

    Article  CAS  Google Scholar 

  16. A. I. Kingon and J.B. Clark, J. Am. Ceram. Soc. 66 (4), 253 (1983).

    Article  CAS  Google Scholar 

  17. R. B. Atkin and R. M. Fulrath, J. Am. Ceram. Soc. 54 (5), 265 (1971).

    Article  CAS  Google Scholar 

  18. R. L. Holman and R. M. Fulrath, J. Am. Ceram. Soc. 55 (4), 192 (1972).

    Article  CAS  Google Scholar 

  19. R. A. Assink and R. W. Schwartz, Chem. Mater. 5 (4), 511 (1993).

    Article  CAS  Google Scholar 

  20. R. W. Schwartz, T. J. Boyle, S. J. Lockwood, M. B. Sinclair, D. Dimos, and C. D. Buchheit, Int. Ferro. 7, 259 (1995).

    Article  CAS  Google Scholar 

  21. R. W. Schwartz, J.A. Voigt, C. D. Buchheit, and T. J. Boyle, Ceram. Trans. 43, 145 (1994).

    CAS  Google Scholar 

  22. R. W. Schwartz, R. A. Assink, and T. J. Headly, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992).

  23. R. W. Schwartz, R. A. Assink, D. Dimas, M. B. Sinclair, T. J. Boyle, and C. D. Buchheit, in Ferroelectric Thin Films IV, edited by B. A. Tuttle, S. B. Desu, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 377.

  24. J. A. Voigt, B. A. Tuttle, T. J. Headley, M. O. Eatough, D. L. Lamppa, and Goodnow, in Ferroelectric Thin Films III, edited by B. A. Tuttle, E. R. Myers, S. B. Desu, and P. K. Larsen (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 15.

  25. B. A. Tuttle, B. L. Draper, J. Michael, R. D. Nasby, M. T. Dugger, G. W. Arnold, W.L. Warren, and D.C. Goodnow, PAC RIM Meeting, November 7–10, 1993, Honolulu, HI.

    Google Scholar 

  26. B. Tuttle, J.A. Voigt, T. J. Headley, B. G. Potter, D. Dimos, R. W. Schwartz, M. T. Dugger, J. Michael, R. D. Nasby, T. J. Garino, and D. C. Goodnow, Ferroelectrics 151, 11 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefevre, M.J., Speck, J.S., Schwartz, R.W. et al. Microstructural development in sol-gel derived lead zirconate titanate thin films: The role of precursor stoichiometry and processing environment. Journal of Materials Research 11, 2076–2084 (1996). https://doi.org/10.1557/JMR.1996.0261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0261

Navigation