Skip to main content
Log in

Structural transitions and electrical conductivity of C60 films at high temperature

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

X-ray diffraction analysis on C60 films shows that besides fcc phase, there also exists hcp phase, as well as a new crystalline phase with interplanar spacing (d-spacing) of planes parallel to the substrate 0.95 nm. The new phase may relate to the intercrystalline packed C60 molecules between fcc crystallites. The room temperature electrical conductivity of C60 films is found to be in the range of 10−5–10−8 (Ω · cm)−1. The room temperature conductivities of C60 films annealed at temperatures above 473 K are lower by one order of magnitude than those at temperatures below 463 K. This is because the interconnection between the fcc crystallites is weakened due to the disappearance of the new intercrystalline phase and the subsequent heightening of the intercrystalline potential barrier. From the measurement on the conductivity versus time when the film is maintained at a constant temperature, we identified the increase of conductivity is the result of the decrease of hcp phase, while the decrease of conductivity is due to the decrease of the new intercrystalline phase. Because the structures of the films become highly ordered, and defect states in the energy band gap decrease on annealing at high temperature, the conductivity activation energy increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London) 347, 354 (1990).

    Article  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, J. Mater. Res. 8, 2054 (1993).

    Article  CAS  Google Scholar 

  4. S. P. Kelty, C. C. Chen, and C. M. Lieber, Nature (London) 352, 223 (1991).

    Article  CAS  Google Scholar 

  5. P. J. Benning, J.L. Martins, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley, Science 252, 1417 (1991).

    Article  CAS  Google Scholar 

  6. J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. K. Ohno, G. H. Kroll, N. Troullier, R. E. Hauflen, and R. E. Smalley, Phys. Rev. Lett. 66, 1741 (1991).

    Article  CAS  Google Scholar 

  7. J. Mort, K. Okumura, M. Machonkin, R. Ziolo, D. R. Huffman, and M. I. Ferguson, Chem. Phys. Lett. 186, 281 (1991).

    Article  CAS  Google Scholar 

  8. J. Mort, R. Ziolo, M. Machonkin, D. R. Huffman, and M. I. Ferguson, Chem. Phys. Lett. 186, 284 (1991).

    Article  CAS  Google Scholar 

  9. J. Mort, M. Machonkin, R. Ziolo, D. R. Huffman, and M. I. Ferguson, Appl. Phys. Lett. 60, 1735 (1992).

    Article  CAS  Google Scholar 

  10. R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Marphy, S. J. Duclos, K. B. Lyons, B. Miller, J.M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, and F. A. Thiel, Nature (London) 350, 320 (1991).

    Article  CAS  Google Scholar 

  11. A. Hamed, Y.Y. Sun, Y.K. Tao, R.L. Meng, and P.H. Hor, Phys. Rev. B 47, 10 873 (1993).

    Google Scholar 

  12. H. Yonehara and C. Pac, Appl. Phys. Lett. 61, 575 (1992).

    Article  CAS  Google Scholar 

  13. C. Wen, J. Li, K. Kitazawa, T. Aida, I. Honma, H. Komiyama, and K. Yamada, Appl. Phys. Lett. 61, 2162 (1992).

    Article  CAS  Google Scholar 

  14. R. K. Kremer, T. Rabenau, W. K. Maser, M. Kaiser, A. Simon, M. Haluška, and H. Kuzmany, Appl. Phys. A56, 211 (1993).

  15. T. Aral, Y. Murasakami, H. Suematsu, K. Kikucki, Y. Achiba, and I. Ikemoto, Solid State Commun. 84, 827 (1992).

    Article  Google Scholar 

  16. D. Sarkar and N. J. Halas, Appl. Phys. Lett. 63, 2438 (1993).

    Article  CAS  Google Scholar 

  17. A. Hamed, H. Rasmussen, and P.H. Hor, Phys. Rev. B 48, 14 760 (1993).

    Article  CAS  Google Scholar 

  18. D. E. Luzzi, J. E. Fischer, X. Q. Wang, D. A. Ricketts-Foot, A. R. McGhie, and W. J. Romonow, J. Mater. Res. 7, 335 (1992).

    Article  CAS  Google Scholar 

  19. Z. G. Li and P. J. Fagan, Chem. Phys. Lett. 194, 461 (1991).

    Article  Google Scholar 

  20. J. Q. Li, Z. X. Zhao, Z. Z. Gan, and D. L. Yin, Appl. Phys. Lett. 59, 3108 (1991).

    Article  CAS  Google Scholar 

  21. T. Kitamoto, S. Sasaki, T. Atake, T. Tanaka, H. Kawaji, K. Kikucki, K. Saito, S. Suzuki, Y. Achiba, and I. Ikemoto, Jpn. J. Appl. Phys. 32, L424 (1993).

    Article  CAS  Google Scholar 

  22. J. L. Bver, S. Smaolen, V. Petricek, M. Dusek, M. A. Verheijen, and G. Meijer, Chem. Phys. Lett. 219, 469 (1994).

    Article  Google Scholar 

  23. R. M. Fleming, A. R. Kortan, B. Hessen, T. Siegrist, F. A. Thiel, P. Marsh, R.C. Haddon, R. Tycko, G. Dabbagh, M.L. Kaplan, and A. M. Mujsec, Phys. Rev. B 44, 888 (1991).

    Article  CAS  Google Scholar 

  24. M. D. Pace, T. C. Christidis, J. J. Yin, and J. Milliken, J. Phys. Chem. 96, 6655 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, J., Ma, G. & Chen, G. Structural transitions and electrical conductivity of C60 films at high temperature. Journal of Materials Research 11, 2071–2075 (1996). https://doi.org/10.1557/JMR.1996.0260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0260

Navigation