Skip to main content
Log in

Preparation of Al2O3/Mo nanocomposite powder via chemical route and spray drying

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A route to prepare nanometer-sized Mo particulates in Al2O3 was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO3 was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al2O3 powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on the alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al2O3, and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of the sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al2O3 grains was observed by transmission electron microscopy (TEM). All the evidence revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical roue and following the spray-drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Niihara, A. Nakahria, T. Uchiyama, and T. Hirai, Fracture Mechanics of Ceramic #7, edited by R.C. Bradt, A.G. Evans, D. P. H. Hasselman, and F. F. Lange (Plenum Press, New York, 1986), p. 103.

    Chapter  Google Scholar 

  2. K. Niihara, A. Nakahria, G. Sasaki, and M. Hirabayashi, in Proceedings of MRS Meeting on Advanced Materials (Plenum, Tokyo, 1988), p. 129.

  3. K. Niihara, J. Ceram. Soc. Jpn. 99, 974 (1991).

    Article  CAS  Google Scholar 

  4. K. Niihara, J. Jpn. Powder and Powder Metall. 37, 348 (1990).

    Article  CAS  Google Scholar 

  5. K. Niihara, K. Izhai, and T. Kawakami, J. Mater. Sci. 9, 112 (1990).

    Google Scholar 

  6. K. Niihara, K. Izaki, and A. Nakahira, J. Jpn. Soc. Powder and Powder Metall. 37, 352 (1990).

    Article  CAS  Google Scholar 

  7. K. Niihara, J. Ceram. Soc. Jpn., Int. Ed. 99, 945 (1991).

    Article  Google Scholar 

  8. E. Breval, Z. Deng, S. Chiou, and C. G. Pantano, J. Mater. Sci. 27, 1464, (1992).

    Article  CAS  Google Scholar 

  9. H. M. Jange, J.H. Moon, and C. W. Jang, J. Am. Ceram. Soc. 75 (12), 3369 (1992).

    Article  Google Scholar 

  10. C. L. Hu and M.N. Rahaman, J. Am. Ceram. Soc. 75 (8), 2206 (1992).

    Article  Google Scholar 

  11. M. Nawa, T. Sekino, and K. Niihara, J. Mater. Sci. 29, 3185 (1994).

    Article  CAS  Google Scholar 

  12. R. Hogg, Am. Ceram. Soc. Bull. 60 (2), 206 (1981).

    Google Scholar 

  13. W. C. Wei, S. J. Lu, and B. K. Yu, J. Europ. Ceram. Soc. 15, 155 (1995).

    Article  CAS  Google Scholar 

  14. B. Derjaguin and L. Landau, Acta Physicochim. 14, 633 (1941).

    Google Scholar 

  15. E. Verwey and J. Th. G. Overbeek, in Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948), p. 625.

    Google Scholar 

  16. D. R. Lide, in Handbook of Chemistry and Physics, 72nd ed. (CRC Press, Inc., Boston, MA, 1991–1992), pp. 4–76.

    Google Scholar 

  17. S. J. Lukasiewicz, J. Am. Ceram. Soc. 72 (4), 617 (1989).

    Article  CAS  Google Scholar 

  18. M. Houalla, C. L. Kibby, L. Petrakis, and D. M. Hercules, J. Catal. 83, 50 (1983).

    Article  CAS  Google Scholar 

  19. N. P. Luthra and W-C. Cheng, J. Catal. 107, 154 (1987).

    Article  CAS  Google Scholar 

  20. H. Jeziorowski and H. Knozinger, J. Phys. Chem. 83, 1166 (1979).

    Article  CAS  Google Scholar 

  21. L. Vordonis, N. Spanos, P. G. Koutsoukos, and A. Lycourghiotis, Langmuir 8, 1736 (1992).

    Article  CAS  Google Scholar 

  22. N. Spanos and A. Lycourghiotis, J. Catal. 147, 57 (1994).

    Article  CAS  Google Scholar 

  23. N. Spanos and A. Lycourghiotis, J. Chem. Soc., Faraday Trans. 89 (22), 4101 (1993).

    Google Scholar 

  24. N. Spanos and A. Lycourghiotis, Langmuir 10, 2351 (1994).

    Article  CAS  Google Scholar 

  25. J. S. Reed, in Principles of Ceramic Processing (John Wiley & Sons Inc., Singapore, 1989), p. 280.

    Google Scholar 

  26. B. D. Cullity, in Elements of X-ray Crystallography, 2nd ed. (Addision-Wesley, Reading, MA, 1978), p. 102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, MH., Cheng, FH. & Wei, WC.J. Preparation of Al2O3/Mo nanocomposite powder via chemical route and spray drying. Journal of Materials Research 11, 2020–2028 (1996). https://doi.org/10.1557/JMR.1996.0254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0254

Navigation