Skip to main content
Log in

A model for evaluating and predicting high-temperature thermal expansion

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a new set of experimental data, αV KT V, representing the partial temperature derivative of the work done by the thermal pressure of the solid, is fitted by n terms of a modified Einstein model. Experimental data show that αV KT V, not αV KT, approaches a constant value at high temperature. Based on the observed linear relationship of isothermal bulk modulus with temperature at high temperature, thermal expansion can be evaluated by fitting αV KT V data. Our previous results have shown that at low temperature or for materials with less variable bulk modulus and expansivity, thermal expansion data can be simply approximated by an n term Einstein model. More generally and for many materials, αV KT V data resemble an isochoric specific heat curve. With this method, thermal expansion can be predicted at high temperatures from low and intermediate temperature range data. With accurate thermal expansion data, high temperature bulk moduli can also be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Merchant, K. K. Srivastava, and H. D. Pandey, Crit. Rev. in Solid State Phys. 3, 451 (1973).

    CAS  Google Scholar 

  2. Thermal Expansion of Nonmetallic Solids, edited by Y.S. Touloukian, R. K. Taylor, and T.Y.R. Lee (IFI/Plenum, New York, 1977), Vol. 13.

  3. S. K. Saxena and G. Shen, J. Geophys. Res. 97, 19 813 (1992).

    Article  Google Scholar 

  4. J. B. Wachtman, T.G. Scuderi, and G. W. Cleek, J. Am. Ceram. Soc. 45, 319 (1962).

    Article  CAS  Google Scholar 

  5. R. R. Reeber, Phys. Status Solidi A 32, 321 (1975).

    Article  CAS  Google Scholar 

  6. I. Suzuki, J. Phys. Earth 23, 145 (1975).

    Article  Google Scholar 

  7. M. Blackman, Proc. Phys. Soc. London, Sec. B 70, 827 (1957).

    Article  Google Scholar 

  8. R. R. Reeber and J. L. Haas, in Thermal Expansion, edited by T. A. Hahn (Plenum, New York, 1984), Vol. 8, p. 31.

  9. R. R. Reeber and K. Wang, J. Electron. Mater. 26, 63 (1996).

    Article  Google Scholar 

  10. R. R. Reeber and K. Wang, Mater. Chem. Phys. (1996, in press).

  11. K. Wang and R.R. Reeber, J. Phys. Chem. Solids 56, 895 (1995).

    Article  CAS  Google Scholar 

  12. K. Wang and R. R. Reeber, J. Appl. Crystallogr. 28, 306 (1995).

    Article  CAS  Google Scholar 

  13. E. Grüneisen, Hanbuch der Physik 10, 1 (1926).

    Google Scholar 

  14. T. H. K. Barron, Philos. Mag. 7, 720 (1955).

    Article  Google Scholar 

  15. R. R. Reeber, K. Goessel, and K. Wang, European J. Min. 7, 1039 (1995).

    Article  CAS  Google Scholar 

  16. K. Wang and R.R. Reeber, Phys. Status Solidi A 146, 621 (1994).

    Article  CAS  Google Scholar 

  17. O. L. Anderson, D.G. Isaak, and H. Oda, J. Geophys. Res. 96, 18 037 (1991).

    Google Scholar 

  18. O. L. Anderson, D.G. Isaak, and H. Oda, Rev. Geophys. 30, 57 (1992).

    Article  Google Scholar 

  19. O. L. Anderson and D.G. Isaak, in Mineral Physics & Crystallography, A Handbook of Physical Constants, AGU reference shelf, edited by T.J. Ahrens (AGU, 1995), Vol. 2, p. 64.

  20. A. Encken and W. Dannöhl, Z. Electrochem. 40, 814 (1934), referenced by P.D. Pathak and N.G. Vasavada.27

    Google Scholar 

  21. P. D. Pathak and N.V. Pandya, Curr. Sci. India 28, 320 (1959), referenced by P.D Pathak and N.G. Vasavada.27

    CAS  Google Scholar 

  22. G. K. White, Proc. R. Soc. London A 286, 204 (1965).

    Article  CAS  Google Scholar 

  23. B. Yates and Panter, C. H., Proc. Phys. Soc. 80, 373 (1962).

    Article  CAS  Google Scholar 

  24. R. M. Buffington and W.M. Latimer, J. Am. Chem. Soc. 48, 2305 (1926).

    Article  CAS  Google Scholar 

  25. G. K. White and J. G. Collins, Proc. R. Soc. London A 333, 237 (1973).

    Article  CAS  Google Scholar 

  26. F. D. Enck and J.G. Dommel, J. Appl. Phys. 36, 839 (1965).

    Article  CAS  Google Scholar 

  27. P. D. Pathak and N.G. Vasavada, Acta Crystallogr. A26, 655 (1970).

    Article  Google Scholar 

  28. A. J. Leadbetter and D. M.T. Newshaw, J. Phys. C (Solid State Phys.) 2, 210 (1969).

    Article  Google Scholar 

  29. K. Wang and R.R. Reeber, Phys. Chem. Minerals (1996, in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Reeber, R.R. A model for evaluating and predicting high-temperature thermal expansion. Journal of Materials Research 11, 1800–1803 (1996). https://doi.org/10.1557/JMR.1996.0226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0226

Navigation