Skip to main content
Log in

Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Near stoichiometric titanium nitride (TiN) was deposited from tetrakis(dimethylamido)titanium (TDMAT) and ammonia using atmospheric pressure chemical vapor deposition. Experiments were conducted in a belt furnace; static experiments provided kinetic data and continuous operation uniformly coated 150-mm substrates. Growth rate, stoichiometry, and resistivity are examined as functions of deposition temperature (190−420 °C), ammonia flow relative to TDMAT (0−30), and total gas-flow rate (residence time 0.3−0.6 s). Films were characterized by sheet resistance measurements, Rutherford Backscattering Spectrometry, and X-Ray Photoelectron Spectrometry. Films deposited without ammonia were substoichiometric (N/Ti, 0.6−0.75), contained high levels of carbon (C/Ti = 0.25−0.40) and oxygen (O/Ti = 0.6−0.9), and grew slowly. Small amounts of ammonia (NH3/TDMAT ⩾ 1) brought impurity levels down to C/Ti, 0.1 and O/Ti = 0.3−0.5. Ammonia increased the growth rates by a factor of 4−12 at temperatures below 400 °C. Films 500 Å thick had resistivities as low as 1600 μΩ-cm when deposited at 280 °C and 1500 μΩ-cm when deposited at 370 °C. Scanning electron micrographs indicate a smooth surface and poor step coverage for films deposited with high ammonia concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Kurtz and R. G. Gordon, Thin Solid Films 140, 277 (1986).

    Article  CAS  Google Scholar 

  2. W. Tsai, J. Fair, and D. Hodul, in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by A. Katz, S. P. Murarka, Y. I. Nissim, and J. M. E. Harper (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1993), p. 793.

    Google Scholar 

  3. Y. Inoue, S. Tanimoto, K. Tsujimura, T. Yamashita, Y. Ibara, Y. Yamashita, and K. Yoneda, J. Electrochem. Soc. 141 (4), 1056 (1994).

    Article  CAS  Google Scholar 

  4. W. Tsai, M. Delfino, J. A. Fair, and D. Hodul, J. Appl. Phys. 73 (9), 4462 (1993).

    Article  CAS  Google Scholar 

  5. M. Mandl, H. Hoffman, and P. Kucher, J. Appl. Phys. 68 (5), 2127 (1990).

    Article  Google Scholar 

  6. J. N. Musher and R. G. Gordon, J. Electronic Mater. 20, 1105 (1991).

    Article  CAS  Google Scholar 

  7. I. J. Raaijmakers, R. N. Vrtis, J. Yang, S. Ramaswami, A. Lagendijk, D. A. Roberts, and E. K. Broadbent, in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by A. Katz, S. P. Murarka, Y. I. Nissim, and J. M. E. Harper (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1993), p. 99.

    Google Scholar 

  8. S. Chiang, R. Hendel, and F. Zhang, in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by A. Katz, S. P. Murarka, Y. I. Nissim, and J. M. E. Harper (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1993), p. 813.

    Google Scholar 

  9. J. B. Price, J. O. Borland, and S. Selbrede, Thin Solid Films 236, 311 (1993).

    Article  CAS  Google Scholar 

  10. D. C. Bradley and I. M. Thomas, J. Chem. Soc., 3857 (1960).

  11. R. M. Fix, R. G. Gordon, and D. M. Hoffman, Chem. Mater. 2, 235 (1990).

    Article  CAS  Google Scholar 

  12. R. M. Fix, R. G. Gordon, and D. M. Hoffman, Chem. Mater. 3, 1138 (1991).

    Article  CAS  Google Scholar 

  13. R. M. Fix, R. G. Gordon, and D. M. Hoffman, in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by T. M. Besmann and B. M. Gallois (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 357.

    Google Scholar 

  14. D. Roberts, Schumacher Corporation, private communication.

  15. J. L’ecuyer, J. A. Davies, and N. Matsunami, Nucl. Instrum. Methods 160, 337 (1979).

    Article  Google Scholar 

  16. C. Cohen, J. A. Davies, A. V. Drigo, and T. E. Jackman, Nucl. Instrum. Methods in Phys. Res. 218, 147 (1983).

    Article  CAS  Google Scholar 

  17. W-K. Chu, J. W. Mayer, and M. A. Micolet, Backscattering Spectrometry (Academic Press, Orlando, FL, 1978).

    Book  Google Scholar 

  18. L. C. Feldman and J. W. Meyer, Fundamentals of Surface and Thin Film Analysis (Elsevier Science Publishers, Amsterdam, 1986).

    Google Scholar 

  19. A. Turos and O. Meyer, Nucl. Instrum. Methods in Phys. Res. B4, 92 (1984).

    Article  Google Scholar 

  20. T. C. Huang, R. Gilles, and G. Will, Thin Solid Films 230, 99 (1993).

    Article  CAS  Google Scholar 

  21. L. M. Goldman and D. T. Wu, private communication.

  22. I. J. Raaijmakers et al., Thin Solid Films 247, 85 (1994).

  23. I. J. Raaijmakers, R. N. Vrtis, G. S. Sandhu, J. Yang, E. K. Broadbent, D. A. Roberts, and A. Lagendijk, Proc. 9th Int. IEEE VLSI Multilevel Interconnection Conference (IEEE, New York, 1992).

    Google Scholar 

  24. I. J. Raaijmakers, J. Yang, M. G. Fissel, and K. B. Levy, SEMI Technology Symposium (Semicon, Japan, December, 1992).

    Google Scholar 

  25. R. Chowdhury, X. Chen, and J. Narayan, Appl. Phys. Lett. 64 (10), 1236 (1994).

    Article  CAS  Google Scholar 

  26. A. Katz, A. Feingold, S. Nakahara, S. J. Pearton, E. Lane, M. Geva, F. A. Stevie, and K. Jones, J. Appl. Phys. 71 (2), 993 (1992).

    Article  CAS  Google Scholar 

  27. A. Weber, R. Nikulski, C-P. Klages, M. E. Gross, W. L. Brown, E. Dons, and R. M. Charatan, J. Electrochem. Soc. 141 (3), 849 (1994).

    Article  CAS  Google Scholar 

  28. G. A. Dicit, C. C. Wei, F. T. Liou, and H. Zhang, Appl. Phys. Lett. 62, 357 (1993).

    Article  Google Scholar 

  29. Z. Pang, M. Boumerzoug, R. V. Kruzelecky, P. Mascher, J. G. Simmons, and D. A. Thompson, J. Vac. Sci. Technol. A 12 (1), 83 (1994).

    Article  CAS  Google Scholar 

  30. L. H. Dubois, B. R. Zergarski, and G. Girolami, J. Electrochem. Soc. 139 (12), 3603 (1992).

    Article  CAS  Google Scholar 

  31. J. A. Prybyla, C-M. Chiang, and L. Dubois, J. Electrochem. Soc. 140 (9), 2695 (1993).

    Article  CAS  Google Scholar 

  32. J. A. Prybyla, C-M. Chiang, and L. Dubois, in Chemical Perspectives of Microelectronic Materials III, edited by C. R. Abernathy, C. W. Bates, D. A. Bohling, and W. S. Hobson (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993), p. 287.

    Google Scholar 

  33. B. H. Weiller and B. V. Partido, Chem. Mat. 6 (3), 260 (1994).

    Article  CAS  Google Scholar 

  34. S. C. Sun and M. H. Tsai, Thin Solid Films 253, 440 (1994).

    Article  CAS  Google Scholar 

  35. G. Sandhu, S. G. Meikle, and T. T. Doan, Appl. Phys. Lett. 62 (3), 240 (1993).

    Article  CAS  Google Scholar 

  36. J. N. Musher and R. G. Gordon, J. Electrochem. Soc. 143, 736 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musher, J.N., Gordon, R.G. Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia. Journal of Materials Research 11, 989–1001 (1996). https://doi.org/10.1557/JMR.1996.0124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0124

Navigation