Skip to main content
Log in

Eutectoid temperature of carbon steel during laser surface hardening

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new method was developed to determine the eutectoid temperature, A c1, of carbon steel during laser surface hardening. In the method a three-dimensional heat flow model with temperature-dependent physical properties was set up and solved for the temperature distribution employing a finite element method (FEM). Workpieces were heat-treated to produce a melted and hardened zone by a single pass of a continuous-wave TEM00 CO2 laser beam. The depth profile of the melted zone was used as a calibrator to solve the uncertainty imposed by the unknown surface absorptivity. Obtained was an A c1 of, on average, 770 °C, a superheat of 47 °C compared to the equilibrium A c1 of 723 °C. Furthermore, the numerical model was also employed to predict the hardened depth, and the results show that, for a depth of more than 100 μm, the eutectoid temperature 770 °C leads to a depth about 10% smaller than that predicted at 723 °C. The use of the temperature-dependent physical properties is critical; an error up to 80% could result if constant physical properties are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mazumder, J. Metals, 18 (May, 1983).

  2. E. V. Locke and R. A. Hella, IEEE J. Quantum Electron. QE-10 (2), 179 (1974).

    Article  Google Scholar 

  3. G. H. Harth, W. C. Leslie, V. G. Gregson, and B. A. Sanders, J. Metals 28 (4), 5 (1976).

    Google Scholar 

  4. E. Ohmura, K. Inoue, and Y. Takamachi, JSME Int. J., Ser. I 34 (4), 421 (1991).

    CAS  Google Scholar 

  5. S. J. Na, S. Y. Lee, K. E. Lee, and T. G. Kim, Proc. 3rd Int. Conference on Laser in Manufacturing (IFS Conferences Ltd., Bedford, UK, 1986), p. 383.

    Google Scholar 

  6. O. A. Sandven, Proceedings of the materials processing symposium ICALEO 83, Nov. 14–17, 1983, Los Angeles, CA (1983), Vol. 38, p. 208.

  7. J. R. Bradley and S. Kim, Metall. Trans. A 19A, 2013 (1988).

    Article  CAS  Google Scholar 

  8. C. Maier, P. Schaaf, and U. Gonser, Mater. Sci. Eng. A150, 271 (1992).

    Article  CAS  Google Scholar 

  9. H. E. Cline and T. R. Anthony, J. Appl. Phys. 48 (9), 3895 (1977).

    Article  CAS  Google Scholar 

  10. J. Mazumder and W. M. Steen, J. Appl. Phys. 51 (2), 941 (1980).

    Article  Google Scholar 

  11. H. R. Schercliff and M. F. Ashby, Metall. Trans. A 22A, 2459 (1991).

    Article  Google Scholar 

  12. M. Riabkina-Fishman and J. Zahavi, J. Mater. Res. 3, 1108 (1988).

    Article  CAS  Google Scholar 

  13. S. Kou, D. K. Sun, and Y. P. Le, Metall. Trans. A 14A, 643 (1983).

    Article  Google Scholar 

  14. M. F. Ashby and K. E. Easterling, Acta Metall. 32 (11), 1935 (1984).

    Article  CAS  Google Scholar 

  15. S. J. Na and Y. S. Yang, Surf. Coatings Technol. 34, 319 (1988).

    Article  CAS  Google Scholar 

  16. J. L. Liu, Key Eng. Mater. 46 & 47, 153 (1990).

    Google Scholar 

  17. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart, and Winston, New York, 1985).

    Google Scholar 

  18. U. I. Chang, Proc. ASM Conf. on Applications of Laser in Materials Processing, January 24–26, 1983, Los Angeles, CA (American Society for Metals, Metals Park, OH, 1983), p. 218.

  19. F. L. Stasa, Applied Finite Element Analysis for Engineers (CBS Publishing, New York, 1985).

    Google Scholar 

  20. Metals Handbook, 9th ed. (American Society for Metals, Metals Park, OH, 1978), Vol. 1, pp. 148–151, 742–759.

  21. J. S. Hsiao, Numer. Heat Transfer 8 (6), 653 (1985).

    Article  Google Scholar 

  22. N. Sonti and M. F. Ameteau, Numer. Heat Transfer A 16, 351 (1989).

    Article  Google Scholar 

  23. J. E. Hilliard, A symposium on nucleation phenomena sponsored by Ind. Eng. Chem. and Am. Chem. Soc., Washington, DC (June 1965).

  24. A. A. Howe, Ironmaking and Steelmaking 15 (3), 134 (1988).

    CAS  Google Scholar 

  25. O. G. Kasatkin, B. B. Vinokur, and V. L. Pilyushenko, Mater. Sci. Heat Treatment 26, 27 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Tao, CJ. & Shyu, LT. Eutectoid temperature of carbon steel during laser surface hardening. Journal of Materials Research 11, 458–468 (1996). https://doi.org/10.1557/JMR.1996.0055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0055

Navigation