Skip to main content
Log in

Comparison of diamond-like carbon film deposition by electron cyclotron resonance with benzene and methane

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comparative study of the deposition of diamond-like carbon films using methane or benzene in a microwave electron cyclotron resonance plasma-enhanced chemical vapor deposition system has been performed. Process variables studied were reactor pressure, applied radio frequency substrate bias, and microwave power. The plasma stream was characterized using optical emission spectroscopy and mass spectrometry. Film properties studied included optical energy gap, total hydrogen content, integrated C-H stretch absorption, index of refraction, and Raman spectra. The use of a high C/H ratio reactant such as benzene was found to be advantageous over methane in that higher deposition rates were possible and the resultant films exhibit diamond-like properties without the application of large substrate biases. Another result of this investigation was further confirmation that hard carbon films contain a significant quantity of nonbonded hydrogen [A. Grill and V. Patel, Appl. Phys. Lett. 60 (17), 2089 (1992)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Grill and V. Patel, Appl. Phys. Lett. 60 (17), 2089 (1992).

    Article  CAS  Google Scholar 

  2. J. Angus, P. Koidl, and S. Domitz, in Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (CRC Press, Inc., Boca Raton, FL, 1986).

    Google Scholar 

  3. J. Robertson, Prog. Solid State Chem. 21 (B33), 199 (1991).

    Article  CAS  Google Scholar 

  4. H. Tsai, and D. Bogy, J. Vac. Sci. Technol. A 5, 3287–3312 (1987).

    Article  CAS  Google Scholar 

  5. A. Ono, T. Baba, H. Funamoto, and A. Nishikawa, Jpn. J. Appl. Phys. 25, L808–L810 (1986).

    Google Scholar 

  6. B. Dischler, A. Bubenzer, and P. Koidl, Appl. Phys. Lett. 42, 636–638 (1983).

    Article  CAS  Google Scholar 

  7. C. Keqiang et al., J. Vac. Sci. Technol. A 4, 828–831 (1986).

    Article  Google Scholar 

  8. S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210–L212 (1983).

    Article  Google Scholar 

  9. F. Pool and Y. Shing, J. Appl. Phys. 68, 62–65 (1990).

    Article  CAS  Google Scholar 

  10. S. C. Kuo, E. E. Kunhardt, and A. R. Srivatsa, Appl. Phys. Lett. 59 (20), 2532 (1991).

    Article  CAS  Google Scholar 

  11. T. Fujita and O. Matsumoto, J. Electrochem. Soc. 136, 2624–2629 (1989).

    Article  CAS  Google Scholar 

  12. P. Pastel and W. Varhue, J. Vac. Sci. Technol. A 9 (3), 1129–1133 (1991).

    Article  CAS  Google Scholar 

  13. C. Wild, J. Wagner, and P. Koidl, J. Vac. Sci. Technol. A 5 (4), 2227 (1987).

    Article  CAS  Google Scholar 

  14. J. Wagner, C. Wild, F. Pohl, and P. Koidl, Appl. Phys. Lett. 48, 106–108 (1986).

    Article  CAS  Google Scholar 

  15. N. Mutsukura, S. Inoue, and Y. Machi, J. Appl. Phys. 72 (1), 43 (1992).

    Article  CAS  Google Scholar 

  16. A. Grill, Cold Plasmas in Material Fabrication (IEEE Press, New York, 1994), p. 15.

    Book  Google Scholar 

  17. B. Dischler, A. Bubenzer, and P. Koidl, Solid State Commun. 48, 105–108 (1983).

    Article  CAS  Google Scholar 

  18. S. Craig and G. Harding, Thin Solid Films 97, 345–361 (1982).

    Article  CAS  Google Scholar 

  19. W. Lanford and M. Rand, J. Appl. Phys. 49, 2473–2477 (1978).

    Article  CAS  Google Scholar 

  20. J. Coburn and M. Chen, J. Appl. Phys. 51, 3134–3136 (1980).

    Article  CAS  Google Scholar 

  21. R. Dreyfus, J. Jasinski, R. Walkup, and G. Selwyn, Pure Appl. Chem. 57, 1265–1276 (1985).

    Article  CAS  Google Scholar 

  22. R. Gottscho and T. Miller, Pure Appl. Chem. 56, 189–208 (1984).

    Article  CAS  Google Scholar 

  23. J. Aarts, C. Beenakker, and F. De Heer, Physica 53, 32 (1971).

    Article  CAS  Google Scholar 

  24. R. M. Roth and R. M. Jarman, in Plasma Processing and Synthesis of Materials, edited by D. Apelion and J. Szekely (Mater. Res. Soc. Symp. Proc. 98, Pittsburgh, PA, 1987), p. 327.

    Google Scholar 

  25. H. Yasuda, in Thin Film Processes, edited by J. Vossen and W. Kern (Academic Press, New York, 1978).

    Google Scholar 

  26. Y. Weng, M. Kushner, Appl. Phys. 72 (1), 33 (1992).

    Article  CAS  Google Scholar 

  27. Y. J. Chabal and C. K. N. Patel, Rev. Mod. Phys. 59 (4), 835 (1987).

    Article  CAS  Google Scholar 

  28. E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976).

    Book  Google Scholar 

  29. J. Robertson and O’Reilly, E. P. Phys. Rev. 35 (6), 2946 (1987).

    Article  CAS  Google Scholar 

  30. X. Jiang, K. Reichelt, and B. Stritzker, J. Appl. Phys. 68 (3), 1018 (1990).

    Article  CAS  Google Scholar 

  31. Y. Lifshitz, S. R. Kasi, and J.W. Rabalais, Phys. Rev. Lett. 62, 1290 (1989).

    Article  CAS  Google Scholar 

  32. M. A. Tamor, J. A. Haire, C. H. Wu, and K. C. Hass, Appl. Phys. Lett. 54 (2), 123 (1989).

    Article  CAS  Google Scholar 

  33. D. Dasgupta, F. Demichelis, C. F. Pirri, and A. Tagliaferro, Phys. Rev. B 43, 2131 (1991).

    Article  CAS  Google Scholar 

  34. R. O. Dillon, J.A. Wooliam, and V. Katkanant, Phys. Rev. B 29 3482 (1984).

    Google Scholar 

  35. N. H. Cho, D. K. Veirs, J. W. Ager III, M. D. Rubin, C. B. Hopper, and D. B. Bogy, J. Appl. Phys. 71 (5), 2243 (1992).

    Article  CAS  Google Scholar 

  36. K. Sinh, J. Menedez, O. F. Sankey, D. A. Johnson, W. J. Varhue, J. N. Kidder, P. W. Pastel, and W. Lanford, Appl. Phys. Lett. 60 (5), 562 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andry, P.S., Pastel, P.W. & Varhue, W.J. Comparison of diamond-like carbon film deposition by electron cyclotron resonance with benzene and methane. Journal of Materials Research 11, 221–228 (1996). https://doi.org/10.1557/JMR.1996.0027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0027

Navigation