Skip to main content
Log in

Damage-resistant alumina-based layer composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new philosophy for tailoring layer composites for damage resistance is developed, specifically for alumina-based ceramics. The underlying key to the approach is microstructural control in the adjacent layers, alternating a traditional homogeneous fine-grain alumina (layer A) for hardness and wear resistance with a heterogeneous alumina : calcium-hexaluminate composite (layer C) for toughness and crack dispersion, with strong bonding between the interlayers. Two trilayer sequences, ACA and CAC, are investigated. Hertzian indentation tests are used to demonstrate the capacity of the trilayers to absorb damage. In the constituent materials, the indentation responses are fundamentally different: ideally brittle in material A, with classical cone cracking outside the contact; quasi-plastic in material C, with distributed microdamage beneath the contact. In the ACA laminates, shallow cone cracks form in the outer A layer, together with a partial microdamage zone in the inner C layer. A feature of the cone cracking is that it is substantially shallower than in the bulk A specimens and does not penetrate to the underlayer, even when the applied load is increased. This indicates that the subsurface microdamage absorbs significant energy from the applied loads, and thereby “shields” the surface cone crack. Comparative tests on CAC laminates show a constrained microdamage zone in the outer C layer, with no cone crack, again indicating some kind of shielding. Importantly, interlayer delamination plays no role in either layer configuration; the mechanism of damage control is by crack suppression rather than by deflection. Implications for the design of synergistic microstructures for damage-resistant laminates are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kendall, Proc. R. Soc. London A 344, 287–302 (1975).

    Article  Google Scholar 

  2. J. W. Hutchinson, in Metal-Ceramic Interfaces, edited by M. Rühle, A. G. Evans, M. F. Ashby, and J.P. Hirth (Acta-Scripta Metall. Proceedings Series, 1990), Vol. 4, pp. 295–306.

  3. J. W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 64 (1991).

    Google Scholar 

  4. W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, Nature (London) 347, 455–457 (1991).

    Article  Google Scholar 

  5. C. J. Russo, M. P. Harmer, H. M. Chan, and G. A. Miller, J. Am. Ceram. Soc. 75, 3396–3400 (1992).

    Article  CAS  Google Scholar 

  6. M. P. Harmer, H. M. Chan, and G. A. Miller, J. Am. Ceram. Soc. 75, 1715–1728 (1992).

    Article  CAS  Google Scholar 

  7. D. B. Marshall, J.J. Ratto, and F. F. Lange, J. Am. Ceram. Soc. 74, 2979–2987 (1991).

    Article  CAS  Google Scholar 

  8. D. B. Marshall, Am. Ceram. Soc. Bull. 71, 969–973 (1992).

    CAS  Google Scholar 

  9. P. E. D. Morgan and D. B. Marshall, J. Am. Ceram. Soc. (1995, in press).

    Google Scholar 

  10. B. R. Lawn, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).

    Book  Google Scholar 

  11. F. C. Roesler, Proc. Phys. Soc. London B 69, 981 (1956).

    Article  Google Scholar 

  12. F. C. Frank and B. R. Lawn, Proc. R. Soc. London A 299, 291–306 (1967).

    Article  Google Scholar 

  13. B. R. Lawn, J. Appl. Phys. 39, 4828–4836 (1968).

    Article  CAS  Google Scholar 

  14. M. V. Swain and B. R. Lawn, Phys. Status Solidi 35, 909–923 (1969).

    Article  CAS  Google Scholar 

  15. T. R. Wilshaw, J. Phys. D: Appl. Phys. 4, 1567–1581 (1971).

    Article  Google Scholar 

  16. B. R. Lawn and T. R. Wilshaw, J. Mater. Sci. 10, 1049–1081 (1975).

    Article  Google Scholar 

  17. A. G. Evans and T. R. Wilshaw, Acta Metall. 24, 939–956 (1976).

    Article  CAS  Google Scholar 

  18. M.V. Swain and J.T. Hagan, J. Phys. D: Appl. Phys. 9, 2201–2214 (1976).

    Article  CAS  Google Scholar 

  19. B. R. Lawn and D. B. Marshall, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1978), Vol. 3, pp. 205–229.

  20. R. Warren, Acta Metall. 26, 1759–1769 (1978).

    Article  CAS  Google Scholar 

  21. B. R. Lawn and S.M. Wiederhorn, in Contact Mechanics and Wear of Rail/Wheel Systems, edited by J. Kalousek, R. V. Dukkipati, and G. M. Gladwell (University of Waterloo Press, Vancouver, 1983). pp. 133–147.

  22. K. Zeng, K. Breder, and D. J. Rowcliffe, Acta Metall. 40, 2595–2600 (1992).

    Article  CAS  Google Scholar 

  23. K. Zeng, K. Breder, and D. J. Rowcliffe, Acta Metall. 40, 2601–2605 (1992).

    Article  CAS  Google Scholar 

  24. J. S. Field and M. V. Swain, J. Mater. Res. 8, 297–306 (1993).

    Article  CAS  Google Scholar 

  25. F. Guiberteau, N. P. Padture, H. Cai, and B. R. Lawn, Philos. Mag. A 68, 1003–1016 (1993).

    Article  CAS  Google Scholar 

  26. F. Guiberteau, N. P. Padture, and B. R. Lawn, J. Ceram. Soc. 77, 1825–1831 (1994).

    Article  CAS  Google Scholar 

  27. B. R. Lawn, N. P. Padture, H Cai, and F. Guiberteau, Science 263, 1114–1116 (1994).

    Article  CAS  Google Scholar 

  28. H. Cai, M. A. Stevens Kalceff, and B. R. Lawn, J. Mater. Res. 9, 762–770 (1994).

    Article  CAS  Google Scholar 

  29. H Cai, M. A.S. Kalceff, B.M. Hooks, B.R. Lawn, and K. Chyung, J. Mater. Res. 9, 2654–2661 (1994).

    Article  CAS  Google Scholar 

  30. N. P. Padture and B. R. Lawn, J. Am. Ceram. Soc. 77, 2518–2522 (1994).

    Article  CAS  Google Scholar 

  31. A. Pajares, F. Guiberteau, B. R. Lawn, and S. Lathabai, J. Am. Ceram. Soc. 78, 1083–1086 (1995).

    Article  CAS  Google Scholar 

  32. A. Pajares, L. Wei, B. R. Lawn, and D. B. Marshall, J. Mater. Res. 10, 2613 (1995).

    Article  CAS  Google Scholar 

  33. H. H. K. Xu, L. Wei, N. P. Padture, B. R. Lawn, and R. L. Yeckley, J. Mater. Sci. 30, 869–878 (1995).

    Article  CAS  Google Scholar 

  34. N. P. Padture and B. R. Lawn, J. Am. Ceram. Soc. 78, 1431–1438 (1995).

    Article  CAS  Google Scholar 

  35. L. An, K. Soni and H. M. Chan, J. Mater. Sci. (1995, in press).

    Google Scholar 

  36. L. An and H.M. Chan, in N.P. Padture and B.R. Lawn, Acta Metall. 43, 1609–1617.

  37. S. I. Bae and S. Baik, J. Am. Ceram. Soc. 76, 1065–1067 (1993).

    Article  CAS  Google Scholar 

  38. T. O. Mulhearn, J. Mech. Phys. Solids 7, 85–96 (1959).

    Article  Google Scholar 

  39. A. C. Fischer-Cripps and B. R. Lawn, Acta Metall. (in press).

  40. M. C. Shaw, D. B. Marshall, M. S. Dadkhah, and A. G. Evans, Acta Metall. 41, 3311–3322 (1993).

    Article  CAS  Google Scholar 

  41. R. Sathyamoorthy, A. V. Virkar and R. A. Cutler, J. Am. Ceram. Soc. 75, 1136–1141 (1992).

    Article  CAS  Google Scholar 

  42. S. Baskaran, S. D. Nunn, D. Popovic, and J.W. Halloran, J. Am. Ceram. Soc. 76, 2209–2216 (1993).

    Article  CAS  Google Scholar 

  43. S. Baskaran and J. W. Halloran, J. Am. Ceram. Soc. 76, 2217–2224 (1993).

    Article  CAS  Google Scholar 

  44. S. Baskaran and J. W. Halloran, J. Am. Ceram. Soc. 76, 1249–1255 (1994).

    Article  Google Scholar 

  45. B. R. Lawn, S. M. Wiederhorn, and H. Johnson, J. Am. Ceram. Soc. 58, 428–432 (1975).

    Article  CAS  Google Scholar 

  46. S. M. Wiederhorn and B. R. Lawn, J. Am. Ceram. Soc. 60, 451–458 (1977).

    Article  CAS  Google Scholar 

  47. D. B. Marshall and B. R. Lawn, J. Am. Ceram. Soc. 61, 21–27 (1978).

    Article  Google Scholar 

  48. H. H. K. Xu and S. Jahanmir, J. Am. Ceram. Soc. 78, 497–500 (1995).

    Article  CAS  Google Scholar 

  49. H. H. K. Xu and S. Jahanmir, J. Mater. Sci. (1995, in press).

    Google Scholar 

  50. C. K. Chyung, G. H. Beall, and D. G. Grossman, in Electron Microscopy and Structure of Materials, edited by G. Thomas, R. M. Fulrath, and R. M. Fisher (University of California Press, Berkeley, CA, 1972), pp. 1167–1194.

  51. N. P. Padture, C. J. Evans, H. H. K. Xu, and B. R. Lawn, J. Am. Ceram. Soc. 78, 215–217 (1995).

    Article  CAS  Google Scholar 

  52. B. R. Lawn, N. P. Padture, F. Guiberteau, and H. Cai, Acta Metall. 42, 1683–1693 (1994).

    Article  CAS  Google Scholar 

  53. K. Chyung, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum Press, New York, 1974), Vol. 2, pp. 495–508.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, L., Chan, H.M., Padture, N.P. et al. Damage-resistant alumina-based layer composites. Journal of Materials Research 11, 204–210 (1996). https://doi.org/10.1557/JMR.1996.0025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0025

Navigation