Skip to main content
Log in

Combustion syntheses for BaTi4O9 and PbxBa1x Ti4O9

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

BaTi4O9 and PbxBa1x Ti4O9, where x is 0.1, 0.2, 0.3, 0.4, or 0.5, have been prepared by a combustion synthesis process. The process starts with spray drying aqueous solutions of Pb(NO3)2, Ba(NO3)2, TiO(NO3)2, and β-alanine with appropriate ratios. Combustion reactions occur when heating the spray-dried products to 300 °C, which convert them to BaTi4O9 and PbxBa1xTi4O9 directly. PbxBa1xTi4O9 (x ≧ 0.1) are low temperature, metastable phases and have not been reported before. Pb0.5Ba0.5Ti4O9 is unstable above 800 °C and cannot be sintered. All PbxBa1xTi4O9 compositions will decompose by 1300 °C, the temperature for solid state synthesis of BaTi4O9. Single-phase PbxBa1xTi4O9 (x = 0.1, 0.2, 0.3, 0.4), however, have been sintered at relatively lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Stein, S. W. Keller, and T.E. Mallouk, Science 259, 1558 (1993).

    Article  CAS  Google Scholar 

  2. (a) C. C. Tsuei, A. Gupta, G. Trafas, and D. Mitzi, Science 263, 1259 (1994); (b) L. Krusin-Elbaum, C. C. Tsuei, and A. Gupta, Nature (London) 373, 679 (1995).

    Article  Google Scholar 

  3. (a) A. G. Merzhanov, in Combustion and Plasma Synthesis of High-Temperature Materials: Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings, edited by Z.A. Munir and J.B. Holt (VCH, New York, 1990), p. 1; (b) H.C. Yi. and J. J. Moore, J. Mater. Sci. 25, 1159 (1990); (c) J. B. Holt, in Engineered Materials Handbook: Self-Propagating, High-Temperature Synthesis, Vol. 4, Ceramics and Glasses, edited by S. R. Lampman, M.S. Woods, and T.B. Zorc (ASM INTERNATIONAL, Materials Park, OH, 1991), p. 227.

    Article  Google Scholar 

  4. (a) K. Kourtakis, M. Robbins, and P. K. Gallagher, J. Solid State Chem. 82, 290 (1989); (b) 83, 230 (1989), (c) 84, 88 (1990); (d) K. Kourtakis, M. Robbins, P. K. Gallagher, and T. Tiefel, J. Mater. Res. 4, 1289 (1989).

    Article  CAS  Google Scholar 

  5. R. G. Chandran and K. C. Patil, Mater. Res. Bull. XXVII, 147 (1992).

    Article  Google Scholar 

  6. K. R. Venkatachari, D. Huang, S. P. Ostrander, W. A. Schulze, and G. C. Stangle, J. Mater. Res. 10, 748 (1995).

    Article  CAS  Google Scholar 

  7. K. Suresh, N. R. S. Kumar, and K. C. Patil, Adv. Mater. 3, 148 (1991).

    Article  CAS  Google Scholar 

  8. Y. Zhang and G. C. Stangle, J. Mater. Res. 9, 1997 (1994).

    Article  CAS  Google Scholar 

  9. M. M. A. Sekar and K. C. Patil, J. Mater. Chem. 2, 739 (1992).

    Article  CAS  Google Scholar 

  10. Z. Zhong and P. K. Gallagher, J. Mater. Res. 10, 945 (1995); Z. Zhong, Ph.D. Thesis, The Ohio State University, Columbus, OH (1994).

    Google Scholar 

  11. C. S. Hong, P. Ravindranathan, D. K. Agrawal, and R. Roy, J. Mater. Res. 9, 2398 (1994).

    Article  CAS  Google Scholar 

  12. K. Lukaszewicz, Rocz. Chem. 31, 1111 (1957).

    CAS  Google Scholar 

  13. W. Hofmeister, E. Tillmanns, and W. H. Bauer, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C40, 1510 (1984).

    CAS  Google Scholar 

  14. D. J. Masse, R. A. Purcel, D. W. Readey, E. A. Maguire, and C. P. Hartwig, Proc. IEEE 59, 1628 (1971).

    Article  Google Scholar 

  15. (a) H. M. O’Bryan, J. Thomson, and J.K. Plourde, J. Am. Ceram. Soc. 57, 450 (1974); (b) H. M. O’Bryan, and J. Thomson, J. Am. Ceram. Soc. 57, 522 (1974).

    Article  Google Scholar 

  16. S. J. Fiedziuszko, Microwave J. Sept., 189 (1986).

    Google Scholar 

  17. R. Freer, Silic. Ind. 58 (9–10), 191 (1993).

    Google Scholar 

  18. (a) T. Negas, G. Yeager, S. Bell, and R. Amren, NIST Special Publication 804, 21 (1991); (b) T. Negas and G. Yeager, U.S. Patent 5262 370 (1993); (c) T. Negas, G. Yeager, S. Bell, N. Coats, and I. Minis, Am. Ceram. Soc. Bull 72, 80 (1993).

    CAS  Google Scholar 

  19. (a) Y. Inoue, T. Niiyama, Y. Asai, and K. Sato, J. Chem. Soc. Commun. 7, 579 (1992); (b) Y. Inoue, Japanese Patent 04 330 943 (1992); (c) Y. Inoue, Y Asai, and K. Sato, J. Chem. Soc. Faraday Trans. 90, 797 (1994); (d) Y. Inoue, Kikan Kagaku Sosetsu (Japan: Quarterly Survey of Chemistry) 23, 113 (1994).

    CAS  Google Scholar 

  20. K. Sayama and H. Arakawa, J. Photochem. Photobiol. 77, 243 (1994).

    Article  CAS  Google Scholar 

  21. D. E. Rase and R. Roy, J. Am. Ceram. Soc. 38, 102 (1955).

    Article  CAS  Google Scholar 

  22. J. J. Ritter, R. S. Roth, and J. E. Blendell, J. Am. Ceram. Soc. 69, 155 (1986).

    Article  CAS  Google Scholar 

  23. G. Pfaff, J. Mater. Sci. Lett. 10, 129 (1991).

    Article  CAS  Google Scholar 

  24. G. Pfaff, J. Mater. Chem. 2, 591 (1992).

    Article  CAS  Google Scholar 

  25. (a) I. Tanaka, H. Kojima, and F. Sudo, J. Cryst. Growth 76, 311 (1986); (b) I. Tanaka and H. Kojima, J. Mater. Sci. 24, 959 (1989).

    Article  CAS  Google Scholar 

  26. I. Tanaka, J. Ishikawa, and H. Kojima, Denki Kagaku oyobi Kogyo Butsuri Kagaku (Japan: Electrochemistry and Industrial Physical Chemistry, in English) 58, 503 (1990).

    CAS  Google Scholar 

  27. K. Fukuda, R. Kitoh, and I. Awai, J. Mater. Sci. 30, 1209 (1995).

    Article  CAS  Google Scholar 

  28. S. G. Mhaisalkar, D. W. Readey, and S. A. Akbar, J. Am. Ceram. Soc. 74, 1894 (1991).

    Article  CAS  Google Scholar 

  29. (a) J. P. Grammatico and J. M. P. Lopez, J. Mater. Sci.: Mater. Elec. 3, 82 (1992); (b) P. K. Dutta, R. Asiaie, S. A. Akbar, and W. Zhu, Chem. Mater. 6, 1542 (1994).

    Article  Google Scholar 

  30. F. V. Shaw, Am. Ceram. Soc. Bull. 69, 1484 (1990).

    CAS  Google Scholar 

  31. M. Vallet-Regi, V. Ragel, J. Román, J.L. Martinez, M. Labeau, and J.M. González-Calbet, J. Mater. Res. 8, 138 (1993).

    Article  CAS  Google Scholar 

  32. United States National Institute of Standard and Technology, Standard X-ray Diffraction Powder Patterns, JCPDS 34–70 (1984).

    Google Scholar 

  33. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  34. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976).

    Google Scholar 

  35. Z. Zhong, P. K. Gallagher, D. L. Loiacono, and G. M. Loiacono, Thermochim. Acta. 234, 225 (1994).

    Article  Google Scholar 

  36. G. Gaillard-Groleas, M. Lagier, and D. Sornette, Phys. Rev. Lett. 64, 1577 (1990).

    Article  CAS  Google Scholar 

  37. K. Aykan, J. Am. Ceram. Soc. 51, 577 (1968).

    Article  CAS  Google Scholar 

  38. H. J. Schmutzler, M. M. Antony, and K. H. Sandhage, J. Am. Ceram. Soc. 77, 721 (1994).

    Article  CAS  Google Scholar 

  39. G. Arlt, D. Hennings, and G. De With, J. Appl. Phys. 58, 1619 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Gallagher, P.K. Combustion syntheses for BaTi4O9 and PbxBa1x Ti4O9. Journal of Materials Research 11, 162–168 (1996). https://doi.org/10.1557/JMR.1996.0020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0020

Navigation