Skip to main content
Log in

Amorphous ceramics as the particulate phase in electrorheological materials systems

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Several electrorheological (ER) materials systems composed of amorphous ceramic powders dispersed in light paraffin oil were developed to determine if relationships among ER activities, dielectric properties, compositions, porosities, and oxide species could be identified. The results of the studies suggested that trends among ER activity, dielectric phenomena, and alkali metal species existed. The aluminosilicate powders developed with various alkali metals showed that the ER activity increased as the activation energy decreased. The sodium aluminosilicate appeared to have the greatest ER activity and the lowest activation energy, while the cesium aluminosilicate displayed the weakest ER response, but had the highest activation energy. The thermodielectric responses of the different oxide materials systems developed with sodium showed that the mechanisms contributing to the dielectric dispersions had similar activation energies; however, the magnitudes of the recorded ER activities varied, and thus a direct correlation was not apparent. In addition, studies conducted with ER materials composed of sodium aluminosilicate powders of varying porosities showed that ER activities increased with increasing porosity. Furthermore, the analysis of the results of the thermodielectric and rheological studies of the different amorphous materials ER systems suggested that these materials may have an optimal stimulus frequency/temperature for ER activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Hartsock, R. F. Novak, and G. J. Chaundry, J. Rheol. 35 (7), 1305 (1991).

    Article  Google Scholar 

  2. N. K. Petek, R. J. Goudie, and F. P. Boyle, SAE Paper #881785 (1992).

    Google Scholar 

  3. T. Ushijima, K. Takano, and T. Noguchi, SAE Paper #881787 (1992).

    Google Scholar 

  4. F. E. Filisko and L. H. Radzilowski, J. Rheol. 34 (4), 539–552 (1990).

    Article  Google Scholar 

  5. F. E. Filisko, in Proceedings from the Third International Conference on Electrorheological Materials, Carbondale, IL (1991).

    Google Scholar 

  6. D. R. Gamota and F. E. Filisko, J. Rheol. 34 (4), 539 (1990).

    Article  Google Scholar 

  7. P. Kansal and R. M. Laine, J. Am. Ceram. Soc. 77, 875 (1994).

    Article  CAS  Google Scholar 

  8. D. R. Gamota, B. L. Mueller, and F. E. Filisko, patent submission (1994).

    Google Scholar 

  9. R. A. Anderson, in Proceedings from the Third International Conference on Electrorheological Materials, Carbondale, IL (1991).

    Google Scholar 

  10. J. M. Davis, J. Appl. Phys. 72, 1334 (1992).

    Article  CAS  Google Scholar 

  11. J. M. Ginder and S. L. Ceccio, J. Rheol. 39 (1), 211 (1995).

    Article  CAS  Google Scholar 

  12. A. P. Gast and C. F. Zukoski, Adv. Colloid Interface Sci. 30, 153 (1989).

    Article  CAS  Google Scholar 

  13. E. Matijević, Langmuir 2, 12 (1986).

    Article  Google Scholar 

  14. L. C. Klein, in Sol-gel technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by L. C. Klein (1986), pp. 382–399.

    Google Scholar 

  15. D. W. Breck, Zeolite Molecular Sieves (Robert E. Kreiger Publishing Company, Malabar, FL, 1984), pp. 392–410.

    Google Scholar 

  16. D. L. Klass and T. W. Martinek, J. Appl. Phys. 38, 67 (1967).

    Article  CAS  Google Scholar 

  17. Z. P. Shulman, V. I. Kordonsky, E. A. Zoltsgendler, I. V. Prohorov, B. M. Khusid, and S. A. Demchuk, Int. J. Multiphase Flow 12, 935 (1986).

    Article  CAS  Google Scholar 

  18. O. L. Anderson and D. A. Stuart, J. Am. Ceram. Soc. 37 (12), 573 (1954).

    Article  CAS  Google Scholar 

  19. H. K. Patel and S. W. Martin, Solid State Ionics 53, 1148 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamota, D.R., Schubring, A.W., Mueller, B.L. et al. Amorphous ceramics as the particulate phase in electrorheological materials systems. Journal of Materials Research 11, 144–155 (1996). https://doi.org/10.1557/JMR.1996.0018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0018

Navigation