Skip to main content
Log in

Full-density nanocrystalline Fe–29Al–2Cr intermetallic consolidated from mechanically milled powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fe–29Al–2Cr powders with nanoscale grain sizes were produced by mechanical milling of prealloyed intermetallic powders. A consolidation procedure employing high-pressure, low strain rate hot forging (sinter-forging) has been developed to consolidate the powders into full-density compacts. The relative density and average grain size of the compact have been studied as a function of consolidation temperature at constant pressure. Fully dense compacts (>99.5% theoretical density) were produced at a relatively low temperature of 545°C with a pressure of 1.25 GPa. Transmission electron microscopy and x-ray diffraction analysis indicate that the average grain size has been maintained to the order of 30 nm in samples consolidated under these conditions. By using protective Ar atmosphere during mechanical milling and consolidation, contamination of oxygen and carbon in consolidated samples has been controlled to below a small fraction of an atomic percent. Microhardness tests of nanocrystalline Fe–29Al–2Cr samples indicate a significant strengthening effect due to grain size refinement and a monotonic hardness increase with decreasing residual porosity. Our work demonstrates the feasibility of using mechanically milled powders as the source of nanocrystalline materials for the production of fully dense, low-impurity, nanocrystalline bulk samples needed for reliable mechanical property measurements and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, Phys. Lett. 102A, 365 (1984).

    Article  CAS  Google Scholar 

  3. R. Birringer and H. Gleiter, Advances in Materials Science and Engineering, edited by R. W. Cahn (Pergamon Press, New York, 1988), p. 339.

  4. R. W. Siegel, MRS Bull. XV, 60 (1990); R.W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).

    Article  CAS  Google Scholar 

  5. F. H. Froes and C. Suryanarayana, J. Met. 40, 12 (1989).

    Google Scholar 

  6. H. Bohn, T. Haubold, R. Barringer, and H. Gleiter, Scripta Metall. Mater. 25, 811 (1991).

    Article  CAS  Google Scholar 

  7. H. Hahn and R. S. Averback, J. Am. Ceram. Soc. 74, 2918 (1991).

    Article  CAS  Google Scholar 

  8. C. Altstetter, presented at NATO Advanced Study Institute, Portugal, June 28–July10, 1992.

  9. R. Lappalainen and R. Raj, in Microcomposites and Nanophase Materials, edited by D. Van Aken, G. Was, and A. Ghosh (TMS, 1991), p. 41.

  10. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  11. G. W. Nieman, J.R. Weertman, and R. W. Siegel, Scripta Metall. 24, 145 (1990); G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991); G. E. Fougere, J. R. Weertman, R. W. Siegel, and S. Kim, Scripta Metall. Mater. 26, 1879 (1992).

    Article  Google Scholar 

  12. A. M. El-Sherik, U. Erb, G. Palumbo, and K. T. Aust. Script. Metall. Met. 27, 1185 (1992); U. Erb, presented at the 2nd Int. Conf. Nanostr. Mater., Germany, Oct. 1994.

    Article  CAS  Google Scholar 

  13. H. Chang, C. J. Alstetter, and R. S. Averback, J. Mater. Res. 7, 2962 (1992); H. Chang, J. Höfler, C. J. Alstetter, and R. S. Averback, Mater. Sci. Eng. A153, 676 (1992).

    Google Scholar 

  14. H. Hahn, J. Logas, and R. S. Averback, J. Mater. Res. 5, 609 (1990).

    Article  CAS  Google Scholar 

  15. H. J. Höfler and R. S. Averback, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J. C. Parker, and G. J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 9.

    Google Scholar 

  16. C. C. Koch, in Materials Science and Technology, edited by R. W. Cahn, P. Hassen, and E.J. Kramer (VCH, Weinheim, 1991), Vol. 15, p. 193.

    Google Scholar 

  17. A. W. Weeber and H. Bakker, Physica B 153, 93 (1988).

    Article  CAS  Google Scholar 

  18. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys. 65, 305 (1989); J. Eckert, J. C. Holzer, C. E. Krill, III, and W. L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Article  Google Scholar 

  19. T. Christman and M. Jain, Scripta Metall. Mater. 25, 767 (1991); T. Christman, K. Heady, and T. Vreeland, Jr., Scripta Metall. Mater. 25, 631 (1991).

    Article  CAS  Google Scholar 

  20. M. Jain and T. Christman, Acta metall. mater. 42, 1901 (1994).

    Article  CAS  Google Scholar 

  21. P. Nash, H. Kim, H. Choo, H. Ardy, S. J. Hwang, and A. S. Nash, Mater. Sci. Forum 88–90, 603 (1992); S. J. Hwang, P. Nash, M. Dollar, and S. Dymek, Mater. Sci. Forum 88–90, 611 (1992).

    Google Scholar 

  22. T. R. Smith and K. S. Vecchio, NanoStructural Mater. 5, 11 (1995).

    Article  CAS  Google Scholar 

  23. M. Oehring, F. Appel, Th. Pfullmann, and R. Bormann, Appl. Phys. Lett. 66, 941 (1995).

    Article  CAS  Google Scholar 

  24. C. G. McKamey, J. H. DeVan, P. F. Tortorelli, and V. K. Sikka, J. Mater. Res. 6, 1779 (1991).

    Article  CAS  Google Scholar 

  25. V. K. Sikka, SAMPE Quarterly 22(4), 2 (1991); D. G. Morris and M. Leboeuf, Acta metall. mater. 42, 1817 (1994).

    Article  Google Scholar 

  26. R. M. German, Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1994), p. 321; and in Powder Metallurgy Processing, edited by H. Kuhn and A. Lawley (Academic Press, New York, 1978), pp. 102 and 142.

  27. W. Y. Shih, W-H. Shih, and I.A. Aksay, J. Mater. Res. 10, 1000 (1995).

    Article  CAS  Google Scholar 

  28. (a) R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley and Sons, New York, 1989); (b) N. Wang, Z. Wang, K. T. Aust, and U. Erb, Acta metall. mater. 43, 519 (1995).

    Article  Google Scholar 

  29. H. Hahn and H. Gleiter, Scripta Metall. 13, 3 (1979).

    Article  CAS  Google Scholar 

  30. R. B. Schwarz, S. R. Srinivasin, J. J. Petrovic, and C. J. Maggiore, Mater. Sci. Eng. A 155, 75 (1992).

    Article  Google Scholar 

  31. L. He and E. Ma, presented at Mater. Res. Soc. Fall Meeting, Boston, Nov. 1994; Mater. Sci. Eng. A, in press.

  32. L. He and E. Ma, unpublished results.

  33. E. Ma, J. Mater. Res. 9, 592 (1994); E. Ma and M. Atzmon, Mater. Chem. Phys., 39, 249 (1995).

    Article  CAS  Google Scholar 

  34. M. Atzmon, K. M. Unruh, and W. L. Johnson, J. Appl. Phys. 58, 3865 (1985).

    Article  CAS  Google Scholar 

  35. Sheri Kurland, Gatan Corp., private communications.

  36. ASTM Standard No. C20-87, standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water (American Society for Testing and Materials, Philadelphia, PA, 1987).

    Google Scholar 

  37. A. Taylor, X-ray Metallography (John Wiley & Sons, New York, 1961), p. 455.

    Google Scholar 

  38. Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM, Metals Park, OH, 1986), Vol. 1, p. 148.

  39. C. G. McKamey, private communications. The Vickers hardness measured with 1 kg load is in the range of 225–280 VHN for rolled sheet annealed at high temperatures (>1050 °C). The grain size is of the order of 50–100 μm.

  40. V. Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, Acta metall. mater. 42, 3539 (1994).

    Article  CAS  Google Scholar 

  41. M. F. Ashby and R. H. Jones, Engineering Materials 1 (Pergamon, Oxford, 1993), p. 81.

    Google Scholar 

  42. E. Ryshkewitch, J. Am. Ceram. Soc. 36, 65 (1953).

    Article  Google Scholar 

  43. W. Duckworth, J. Am. Ceram. Soc. 36, 68 (1953).

    Article  Google Scholar 

  44. F. P. Knudsen, J. Am. Ceram. Soc. 42, 376 (1959).

    Article  CAS  Google Scholar 

  45. R. W. Rice, Mater. Sci. Eng. 73, 215 (1985); R.W. Rice, Treatise Mater. Sci. Technol. 2, 199 (1977).

    Article  Google Scholar 

  46. A. G. Evans and E. A. Charles, J. Am. Ceram. Soc. 59, 371 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Ma, E. Full-density nanocrystalline Fe–29Al–2Cr intermetallic consolidated from mechanically milled powders. Journal of Materials Research 11, 72–80 (1996). https://doi.org/10.1557/JMR.1996.0010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0010

Navigation