Skip to main content
Log in

Oxygen incorporation in aluminum nitride via extended defects: Part III. Reevaluation of the polytypoid structure in the aluminum nitride-aluminum oxide binary system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper extends the concepts that were developed to explain the structural rearrangement of the wurtzite AlN lattice due to incorporation of small amounts of oxygen, and to directly use them to assist in understanding the polytypoid structures. Conventional and high-resolution transmission electron microscopy, specific electron diffraction experiments, and atomistic computer simulations have been used to investigate the structural nature of the polytypoids. The experimental observations provide compelling evidence that polytypoid structures are not arrays of stacking faults, but are rather arrays of inversion domain boundaries (IDB’s). A new model for the polytypoid structure is proposed with the basic repeat structural unit consisting of a planar IDB-P and a corrugated IDB. This model shares common structural elements with the model proposed by Thompson, even though in his model the polytypoids were described as consisting of stacking faults. Small additions (≃ 1000 ppm) of silicon were observed to have a dramatic effect on the polytypoid structure. First, it appears that the addition of Si causes the creation of a new variant of the planar IDB (termed IDB-P’), different from the IDB-P defect observed in the AlN-Al2O3 polytypoids; second, the addition of Si influences the structure of the corrugated IDB, such that it appears to become planar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Jack and W. I. Wilson, Nature Phys. Sci. (London) 238, 28 (1972).

    Article  Google Scholar 

  2. Y. Oyama and O. Kamigaito, Jpn. J. Appl. Phys. 10, 1637 (1971).

    Article  CAS  Google Scholar 

  3. S. W. Bailey, V. A. Frank-Kamenetskii, S. Goldsztaub, A. Kato, H. Schulz, A. Pabst, H. Schulz, H. F. W. Taylor, M. Fleischer, and A. J. C. Wilson, Acta Crystallogr. A 33, 681–684 (1977).

    Article  Google Scholar 

  4. K. H. Jack, J. Mater. Sci. 11, 1135–1158 (1976).

    Article  CAS  Google Scholar 

  5. L. J. Gauckler, H. L. Lukas, and G. Petzow, J. Am. Ceram. Soc. 58, 346–347 (1975).

    Article  CAS  Google Scholar 

  6. K. Komeya and A. Tsuge, Yogyo-Kyokai-Shi 89, 615–620 (1981).

    Article  CAS  Google Scholar 

  7. D. P. Thompson, P. Korgul, and S. Hendry, in Progress in Nitrogen Ceramics, NATO Advanced Studies Institute, Series E: Applied Science No. 65, edited by F. L. Riley (Martinus Nijhoff Publishers, The Hague, The Netherlands, 1983), pp. 61–74.

    Chapter  Google Scholar 

  8. B. Bergman, T. Ekstrom, and A. Micski, J. Eur. Ceram. Soc. 8, 141–151 (1991).

    Article  CAS  Google Scholar 

  9. H. K. Zhaung, W. L. Li, J. W. Feng, Z. K. Huang, and D. S. Yan, J. Eur. Ceram. Soc. 7, 329–333 (1991).

    Article  Google Scholar 

  10. T. Ekstrom and M. Nygren, J. Am. Ceram. Soc. 75, 259–276 (1992).

    Article  Google Scholar 

  11. D. P. Thompson, J. Mater. Sci. Lett. 11, 1377–1380 (1976).

    CAS  Google Scholar 

  12. D. P. Thompson, in Nitrogen Ceramics, NATO Advanced Studies Institute, Series E: Applied Science No. 23, edited by F. L. Riley (Noordhoff International Publishing, Leyden, The Netherlands, 1977), pp. 129–135.

    Chapter  Google Scholar 

  13. D. R. Clark, T. M. Shaw, and D. P. Thompson, J. Mater. Sci. Lett. 13, 217–219 (1978).

    Google Scholar 

  14. D. P. Thompson, Mater. Sci. Forum 47, 21–42 (1989).

    Article  CAS  Google Scholar 

  15. G. Van Tendeloo, K. T. Faber, and G. Thomas, J. Mater. Sci. 18, 525–532 (1983).

    Article  Google Scholar 

  16. Y. Bando, M. Mitomo, Y. Kitami, and F. Izumi, J. Microsc. 142, 235–246 (1986).

    Article  CAS  Google Scholar 

  17. K. M. Krishnan, R. S. Rai, G. Thomas, N. D. Corbin, and J. W. McCauley, in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Y. Chen, W. D. Kingery, and R. J. Stokes (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA, 1986), pp. 211–218.

  18. S. F. Bartram and G. A. Slack, Acta Crystallogr. B 35, 2281–2283 (1979).

    Article  Google Scholar 

  19. P. Sainz de Baranda, A. K. Knudsen, and E. Ruh, J. Am. Ceram. Soc. 76, 1761–1771 (1993).

    Article  CAS  Google Scholar 

  20. S. McKernan and C. B. Carter, in Advanced Electronic Packaging Materials, edited by A. T. Barfknecht, J. P. Partridge, C. J. Chen, and C-Y. Li (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 289–294.

  21. A. D. Westwood and M. R. Notis, in Advanced Electronic Packaging Materials, edited by A. T. Barfknecht, J. P. Partridge, C. J. Chen, and C-Y. Li (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 295–300.

  22. R. A. Youngman, J. H. Harris, P. A. Labun, R. J. Graham, and J. K. Weiss, in Advanced Electronic Packaging Materials, edited by A. T. Barfknecht, J. P. Partridge, C. J. Chen, and C-Y. Li (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 301–306.

  23. J. H. Harris, R. A. Youngman, and R. G. Teller, J. Mater. Res. 5, 1763–1773 (1990).

    Article  CAS  Google Scholar 

  24. A. Berger, J. Am. Ceram. Soc. 74, 1148–1151 (1991).

  25. A. D. Westwood and M. R. Notis, J. Am. Ceram. Soc. 74, 1226–1239 (1991).

    Article  CAS  Google Scholar 

  26. A. D. Westwood, J. R. Michael, and M. R. Notis, in Microbeam Analysis 1991, edited by D. G. Howitt (San Francisco Press, San Francisco, CA, 1991), pp. 245–249.

    Google Scholar 

  27. M. R. McCartney, R. A. Youngman, and R. G. Teller, Ultramicroscopy 40, 291–299 (1992).

    Article  Google Scholar 

  28. A. D. Westwood, J. R. Michael, and M. R. Notis, J. Microsc. 167, 287–302 (1992).

    Article  CAS  Google Scholar 

  29. A. D. Westwood, R. A. Youngman, M. R. McCartney, A. N. Cormack, and M. R. Notis, J. Mater. Res. 10, 1270 (1995).

    Article  CAS  Google Scholar 

  30. A. D. Westwood, R. A. Youngman, M. R. McCartney, A. N. Cormack, and M. R. Notis, J. Mater. Res. 10, 1287 (1995).

    Article  CAS  Google Scholar 

  31. R. A. Youngman, A. D. Westwood, and M. R. McCartney, in Defect-Interface Interactions, edited by E. P. Kvam, A. H. King, M. J. Mills, T. D. Sands, and V. Vitek (Mater. Res. Soc. Symp. Proc 319, Pittsburgh, PA, 1994), pp. 45–50.

  32. G. A. Slack, J. Phys. Chem. Solids 34, 321–335 (1973).

    Article  CAS  Google Scholar 

  33. S. Amelinckx and J. Van Landhuyt, in Diffraction and Imaging Techniques in Materials Science, edited by S. Amelinckx, R. Gevers, and J. Van Landuyt (North-Holland Publishing Company, Amsterdam, The Netherlands, 1978), pp. 107–151.

    Chapter  Google Scholar 

  34. R. Serneels, M. Snykers, P. Delavignette, R. Gevers, and S. Amelinckx, Phys. Status Solidi B 58, 277–292 (1973).

    Article  CAS  Google Scholar 

  35. M. Snykers, R. Serneels, P. Delavignette, R. Gevers, J. Van Landuyt, and S. Amelinckx, Phys. Status Solidi A 41, 51–63 (1977).

    Article  CAS  Google Scholar 

  36. W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyke, Phys. Rev. Lett. 69, 3743–3746 (1992).

    Article  CAS  Google Scholar 

  37. A. D. Westwood, Ph.D. Thesis, Lehigh University, Bethlehem, PA (1992), available through UMI dissertation services.

  38. M. E. Smith, J. Phys. Chem. 96, 1444–1448 (1992).

    Article  CAS  Google Scholar 

  39. R. Grun, Acta Crystallogr. B 35, 800–804 (1979).

    Article  Google Scholar 

  40. I. Idresedt and C. Brosset, Acta Chem. Scand 18, 1879–1886 (1964).

    Article  Google Scholar 

  41. P. Redlich, Masters Thesis, Max-Planck Institut fur Metallforschung, Stuttgart, Germany (1993).

  42. S. Hwang and I-W. Chen, J. Am. Ceram. Soc. 77, 1719–1728 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westwoord, A.D., Youngman, R.A., Mc Cartney, M.R. et al. Oxygen incorporation in aluminum nitride via extended defects: Part III. Reevaluation of the polytypoid structure in the aluminum nitride-aluminum oxide binary system. Journal of Materials Research 10, 2573–2585 (1995). https://doi.org/10.1557/JMR.1995.2573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2573

Navigation