Skip to main content
Log in

Investigation of SiC–AlN: Part III. Static and dynamic fatigue

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

SiC/AlN composites with controlled interfacial solid solution were employed in this present work to investigate the effects of interfacial chemical composition and AlN polytypes on the fatigue properties. The dynamic strength of the SiC/AlN composite was found to decrease initially as the stressing rate decreased. However, the strength increased with a decrease in stress rate at a low stress rate region of below 0.01 MPa/s. Crack arrest could have occurred before exhibiting spontaneous failure at an intermediate stress rate of 0.01 MPa/s. It was found that both the interfacial bonding strength and testing technique had essential effects on the behavior of slow crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Sheppard, Am. Ceram. Soc. Bull. 69 (11), 1801–1812 (1990).

    Google Scholar 

  2. J-L. Huang and J-M. Jih, J. Mater. Res. 10, 651 (1995).

    Article  CAS  Google Scholar 

  3. J-L. Huang and J-M. Jih, unpublished.

  4. A. G. Evans, J. Mater. Sci. 9, 1145–1152 (1974).

    Article  CAS  Google Scholar 

  5. F. J. Kuo and J-L. Huang, J. Mater. Sci. Eng. A174, 157–164 (1994).

    Google Scholar 

  6. J-L. Huang and J. Lin, J. Mater. Sci. 28, 1074–1080 (1993).

    Article  CAS  Google Scholar 

  7. Y. Takao and M. Taya, J. Appl. Mech. 52, 806–810 (1985).

    Article  Google Scholar 

  8. G. Leroy, J. D. Embury, G. Edward, and M. F. Ashby, Acta Metall. 29, 1509–1522 (1981).

    Article  CAS  Google Scholar 

  9. K. K. Chawia, Composite Materials, Science and Engineering, edited by B. Ilschner and N. J. Grant (Springer-Verlag, New York, 1987).

    Google Scholar 

  10. R. H. Jones, C. H. Schilling, and L. H. Scheenlein, Mater. Sci. Forum 46, 227–230 (1989).

    Google Scholar 

  11. H. N. Ko, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 99 (7), 533–537 (1981).

    Google Scholar 

  12. J. T. Beals and Isa Bar-on, Ceram. Eng. Sci. Proc. 11 (7–8), 599–603 (1989).

    Google Scholar 

  13. H. N. Ko, J. Non-Cryst. Solids 102, 95–99 (1988).

    Article  Google Scholar 

  14. J. P. Singh, J. Am. Ceram. Soc. 62, 179 (1979).

    Article  CAS  Google Scholar 

  15. W. B. Hilling and R. J. Charles, in High Strength Materials, edited by V. F. Zackay (John Wiley & Sons, New York, 1964), pp. 682–701.

    Google Scholar 

  16. J-L. Huang, Ph.D. Dissertation, University of Utah (1984).

  17. T. S. Cook and F. Erdogan, Int. 3. Eng. Sci. 10, 677–697 (1972).

    Article  Google Scholar 

  18. F. Erdogan and T. S. Cook, Int. J. Fract. 10 (2), 227–240 (1974).

    Article  Google Scholar 

  19. F. Erdogan and G. D. Gupta, Int. J. Fract. 11 (1), 13–27 (1975).

    Article  Google Scholar 

  20. F. Erdogan and V. Biricikoglu, Int. J. Eng. Sci. 11, 745–766 (1973).

    Article  Google Scholar 

  21. D. Broek, Elementary Engineering Fracture Mechanics, 4th ed. (Martinus Nijoff Publishers, Dordrecht, The Netherlands, 1986), Chap. 6.

    Book  Google Scholar 

  22. A. G. Evans, Int. J. Fracture 10 (2), 251–259 (1974).

    Article  CAS  Google Scholar 

  23. J. E. Ritter, Jr., Fracture Mechanics Ceramics 4, 667–686 (1974).

    Google Scholar 

  24. K. Zeng, K. Breder, and D. Rowcliffe, Ceram. Eng. Sci. Proc. 12 (9–10), 2233–2250 (1991).

    Article  CAS  Google Scholar 

  25. H. N. Ko, J. Mater. Sci. Lett., 1438–1441 (1989).

  26. J. P. Singh, A. V. Virkar, D. K. Shetty, and R. S. Gordon, Fracture Mechanics Ceramics 8, 273–284.

  27. S. M. Wiederhorn, J. Am. Ceram. Soc. 50, 407 (1967).

    Article  CAS  Google Scholar 

  28. S. M. Wiederhorn and L. H. Bolz, I. Am. Ceram. Soc. 53, 543 (1970).

    Article  CAS  Google Scholar 

  29. J. E. Ritter, Jr. and J. N. Humenik, J. Mater. Sci. 14, 626–632 (1979).

    Article  CAS  Google Scholar 

  30. H. Wakabayashi and M. Tomozawa, J. Non-Cryst. Solids 102, 95–99 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JL., Jih, JM. Investigation of SiC–AlN: Part III. Static and dynamic fatigue. Journal of Materials Research 10, 2488–2493 (1995). https://doi.org/10.1557/JMR.1995.2488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2488

Navigation