Skip to main content
Log in

Chemisorptive electron emission and atomic force microscopy as probes of plastic deformation during fracture at a metal/glass interface

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We examine the use of chemisorptive emission (electron emission accompanying the adsorption of a reactive gas on a metal surface) and atomic force microscopy as measures of plastic deformation during fracture along a metallic Mg/glass interface. Localized ductile deformation in the metallic phase enhances the fracture energy, exposes metallic Mg to the reactive O2 atmosphere, and produces intense emissions. The number of electrons emitted following fracture in low-pressure oxygen atmospheres is strongly correlated with the total energy expended during failure (peel energy). The presence of localized ductile deformation is verified by atomic force microscopy (AFM): voids are observed on surfaces yielding significant cmissions and enhanced fracture energies. These voids are not observed on samples yielding the lowest peel energies and emission intensities, i.e., where the contribution of deformation to the peel energy is negligible. Quantitative use of roughness data derived from the AFM images is, however, problematic. The potential for chemisorptive electron emission as a probe of deformation along interfaces involving Mg, Ti, Zr, and Al is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans and J.W. Hutchinson, Acta Metall. 37, 909 (1989).

    Article  CAS  Google Scholar 

  2. Ζ. Chen and J.J. Mecholsky, Jr., J. Mater. Res. 8, 2362 (1993).

    Article  CAS  Google Scholar 

  3. A.G. Evans and B.J. Dalgleish, Mater. Sci. Eng. A162, 1 (1993).

    Article  CAS  Google Scholar 

  4. J. Kim, K.S. Kim, and Y.H. Kim, J. Adhesion Sci. Technol. 3, 174 (1989).

    Article  Google Scholar 

  5. A.G. Evans, B.J. Dalgleish, M. He, and J.W. Hutchinson, Acta Metall. 37, 3249 (1989).

    Article  CAS  Google Scholar 

  6. I.E. Reimanis, B.J. Dalgleish, and A.G. Evans, Acta Metall. Mater. 39, 3133 (1991).

    Article  CAS  Google Scholar 

  7. J. T. Dickinson, L. C. Jensen, S. C. Langford, and R. G. Hoagland, J. Mater. Res. 9, 1156 (1994).

    Article  CAS  Google Scholar 

  8. B. Sujak and A. Gieroszynski, Acta Phys. Polon. 28, (1968).

  9. W.J. Baxter, Fatigue Eng. Mater. Struc. 1, 343 (1979).

    Article  CAS  Google Scholar 

  10. O. F. Hagena, G. Knop, R. Fromknecht, and G. Linker, J. Vac. Sci. Technol. A 12, 282 (1994).

    Article  CAS  Google Scholar 

  11. Y. Watanabe, Y. Nakamura, J.T. Dickinson, and S. C. Langford, J. Non-Cryst. Solids 177, 9 (1994).

    Article  CAS  Google Scholar 

  12. L. A. K’Singam, J. T. Dickinson, and L. C. Jensen, J. Am. Ceram. Soc. 68, 510 (1985).

    Article  Google Scholar 

  13. D. L. Doering, S. C. Langford, J.T. Dickinson, and P. Xiong-Skiba, J. Vac. Sci. Technol. A 8, 2401 (1990).

    Article  CAS  Google Scholar 

  14. J.J. Mecholsky, Jr., S. W. Freimam, and R. W. Rice, J. Mater. Sci. 11, 1310 (1976).

    Article  CAS  Google Scholar 

  15. Richard W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley, New York, 1989), pp. 81-83.

    Google Scholar 

  16. A.G. Evans and B.J. Dalgleish, Acta Metall. Mater. 40, S295 (1992).

    Article  CAS  Google Scholar 

  17. B.M. McCarroll, J. Chem. Phys. 50, 4758 (1969).

    Article  CAS  Google Scholar 

  18. B. Kasemo, E. Törnqvist, and L. Walldén, Mater. Sci. Eng. 42, 23 (1980).

    Article  CAS  Google Scholar 

  19. R.H. Prince and R. Persaud, Surf. Sci. 207, (1988).

  20. R. H. Prince, R. M. Lambert, and J. S. Foord, Surf. Sci. 107, 605 (1981).

    Article  CAS  Google Scholar 

  21. M.A. Loudiana, J. Bye, J.T. Dickinson, and D.A. Dickinson, Surf. Sci. 157, 459 (1985).

    Article  CAS  Google Scholar 

  22. I. V. Krylova, Poverkhnost Fiz. Khim. Mekhan. 1, 5 (1988).

    Google Scholar 

  23. J.K. N0rskov, D.M. Newns, and B.I. Lindqvist, Surf. Sci. 80, 179 (1979).

    Article  Google Scholar 

  24. B. Kasemo, E. Törnqvist, J. K. N0rskov, and B. I. Lindqvist, Surf. Sci. 89, 554 (1979).

    Article  CAS  Google Scholar 

  25. R.H. Prince, R. M. Lambert, and J. S. Foord, Surf. Sci. 107, 605 (1981).

    Article  CAS  Google Scholar 

  26. M.P. Cox, J.S. Foord, R.M. Lambert, and R.H. Prince, Surf. Sci. 129, 399 (1983).

    Article  CAS  Google Scholar 

  27. E.B. Deblasi Bourdon and R.H. Prince, Surf. Sci. 144, 591 (1984).

    Article  Google Scholar 

  28. H. Namba, J. Darville, and J. M. Gilles, Surf. Sci. 108, 446 (1981).

    Article  CAS  Google Scholar 

  29. G. C. Allen, P.M. Tucker, B.E. Hayden, and D. F. Klemperer, Surf. Sci. 102, 207 (1981).

    Article  CAS  Google Scholar 

  30. T. F. Gessell and E.T. Arakawa, Surf. Sci. 33, 419 (1972).

    Article  Google Scholar 

  31. J. D. Embury and J. P. Hirth, “On dislocation storage and the mechanical response of fine scale microstructures,” pre-publication.

  32. B.B. Mandelbrot, D.E. Passoja, and A.J. Paullay, Nature 308, 721 (1984).

    Article  CAS  Google Scholar 

  33. J. J. Mecholsky, D. E. Passoja, and K. S. Feinberg-Ringel, J. Am. Ceram. Soc. 72, 60 (1989).

    Article  CAS  Google Scholar 

  34. E.E. Underwood and K. Banerji, Mater. Sci. Eng. 80, 1 (1986).

    Article  Google Scholar 

  35. J.L. Chermant and M. Coster, J. Mater. Sci. 14, 509 (1979).

    Article  CAS  Google Scholar 

  36. R. S. Sayles, in Rough Surfaces, edited by T. R. Thomas (Longman, London, 1982), p. 92.

  37. C. P. Warner and D.A. Bonnell, in Interface Dynamics and Growth, edited by K. S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992), p. 393.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakahara, S., Langford, S.C. & Dickinson, J.T. Chemisorptive electron emission and atomic force microscopy as probes of plastic deformation during fracture at a metal/glass interface. Journal of Materials Research 10, 2033–2041 (1995). https://doi.org/10.1557/JMR.1995.2033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2033

Navigation